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1
Introduction

One of the issues to address in research on spoken dialogue systems and embodied
conversational agents is to take care that the system produces appropriate behavior
when the person interacting with the system is speaking. In human-human conversa-
tions, listeners produce feedback to the speaker in the form of nods, facial expressions,
and short expressions such as ’uh huh’, ’mmh’ for instance. We all know from experi-
ence that in the absence of such signals - which we will refer to as listener responses
- communication problems can arise.

One solution to the issue would be to have the system produce listener responses
at random. However, it will turn out in this case that there are moments during
the speech in which listener responses are expected by the speaker which are not
being produced by the system and moments where the system produces a response
which is somewhat unexpected. A designer of an artificial listener would like to avoid
misplaced responses. The research described in this thesis addresses precisely this
issue. It proposes and evaluates algorithms to have a system produce appropriate
listener responses of a certain kind. These are based on studies - also part of this
thesis - of what real human listeners do when they interact with another human
speaker. For this part, special methods were introduced that try to take into account
the fact that not all listeners behave in the same way. While there are cases where a
listener response is expected and cases where they are highly unexpected, there are
also many moments during a conversation where producing a response is fine, but
not producing it is fine as well - where one person would produce a response and
another person would not.

1.1 Listening Behavior

Having a conversation requires complex coordination between verbal and nonverbal
behavior to shape the information which is passed on from one interlocutor to the
other. This is true for the interlocutor who is speaking as well as for the interlocu-
tor currently listening. The speaker provides the information, while the listener is
constantly providing feedback to the speaker. Researchers have found that the func-
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tion of this feedback is to signal contact, perception, understanding and/or other
attitudinal reactions [128, 37, 3, 53, 36, 14] to the speaker. Feedback is regarded
as an important aspect of the grounding process between interlocutors [37, 18, 36].
In this grounding process the common ground in terms of mutual knowledge, mu-
tual beliefs and mutual assumptions is established. Before advancing further into
the dialog the interlocutors make sure that everyone has a clear understanding of
what has come before. The (absence of) feedback plays an important role in this
aspect. The speaker uses the (absence of) feedback from the listener to assess the
current understanding of the common ground by the listener and adapts to the lis-
tener’s needs if needed [44, 55, 58, 56, 59, 53, 7, 14]. For example, when the listener
gives a signal of misunderstanding in reaction to vital information or does not ac-
knowledge it, the speaker can choose to repeat, rephrase or give more details about
this information. Alternatively, when the listener gives a clear signal of understand-
ing early on in an explanation the speaker can choose to shorten this explanation.
These improvements in quality of the speaker’s speech have been shown by several
researchers [97, 92, 91, 93, 7] as well as the subsequent improvement in understand-
ing of the speaker’s speech by the listener [93, 7, 19, 50, 158]. Furthermore, listening
behavior has been proven to increase the rapport between interlocutors [27, 62].

Throughout the literature, many names are give for the instances of feedback,
such as backchannel (activity/feedback) [160, 71, 153], minimal response [126, 48],
reactive token [33], accompaniment signal [86], acknowledgment token [83, 43, 161,
84], aizuchi [104, 87], and many more. In this thesis the term listener responses will
be adopted for these behaviors [40, 7, 8, 52]. Many of the aforementioned terms refer
to a subset of the behaviors with a specific function. Since in this thesis no analysis
will be made into the function of the behaviors, the neutral term listener response is
preferred.

The form of these listener responses ranges from short vocal utterances such as
“uh-huh”, “yeah” or “okay” to various head gestures, smiles [21] and other facial dis-
plays. Researchers have analyzed the acoustic characteristics and semantics of the
vocal listener responses [65, 76, 25, 29, 134, 10] and the various forms of head ges-
tures [66, 67, 82, 2, 30, 72, 119] and facial displays [105] used as listener response.
In this thesis the main focus will be on head gestures, in particular head nods. Most
of the listener responses in the corpus recorded for this thesis are head nods and
generation experiment will be conducted with head nods as well.

Bavelas et al. [7] make the distinction between generic and specific listener re-
sponses. In this distinction the generic listener responses are not specifically con-
nected to what the speaker is saying. One could easily interchange one generic lis-
tener response with another and both would be equally appropriate. The main func-
tion of these generic listener responses is to signal attendence and a general notion of
understanding to let the speaker know he/she can continue. Typical generic listener
responses include nods and minimal verbal utterance such as “mm-hmm” or “yeah”.
The focus of the thesis is on this generic type of listener responses, as the head nods
and vocalizations in the corpus recorded for this thesis are all of the this type.

The specific listener responses in this distinction are tightly connected to what
the speaker is saying. These listener responses give an assessment of what has been
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said and as such cannot always be interchanged. Typical specific listener responses
include emotional facial displays, such as smiles, fear or surprise, and short verbal
utterances such as “oh, wow!” or “that’s sad”. These specific listener responses give
an assessment of what has been said and/or a signal of understanding for specific
parts of what has been said, shown by repetitions or additions. Goodwin [57] makes
a similar distinction between continuers and assessments.

Differences in listening behavior in terms of the number of listener responses given
and the form of the listener responses have been found between interlocutors of dif-
ferent gender [75, 103, 96, 126, 41, 109, 47] and culture [157, 104, 33, 156, 135,
47, 69, 159]. However, even when these factors are the same the listening behavior
of individuals is seldom the same. Giving a listener response is often optional. An
interaction will not immediately break down if one or even a few opportunities to
give a listener response are passed up by the listener. Little is known about the factors
that determine whether an opportunity can be passed up by the listener or not. One
of the goals of this thesis is to give more insight into these factors by analyzing what
will be called response opportunities (see Section 1.3) in human-human interactions.

1.2 Embodied Conversational Agents

Besides studying listening behavior in interactions between humans, the behavior has
also received attention from the virtual agents and robotics communities. The quali-
ties that appropriate listening behavior brings to an interaction, such as improvement
of speaker’s speech and increased rapport between interlocutors, are highly desired
qualities for the applications for systems such as companion or information giving
agents.

Many aspects of listening behavior for embodied conversational agents have been
investigated. Some researchers have focussed on the perception of generated listener
responses [60, 130, 145, 15, 73, 143, 17, 120, 122]. Other researchers have focussed
on the detection of visual listener responses [106] or vocal listener responses [112,
111]. Furthermore, researchers have worked on the interpretation of and adaptation
to listening behavior [22, 23]. Finally, researchers have also investigated the effect
of generated listening behavior on the user of the embodied conversational agent
system [61, 62, 132, 144, 127, 146, 147, 125].

The focus of this thesis and the remainder of this section will be on computational
models that generate listening behavior in response to the speaker. These models an-
alyze the speaker and generate listener responses at the appropriate times to signal
attention to, understanding and/or assessment of what has been said. The distinc-
tion made by Bavelas et al. [7] between generic and specific listener responses has
also been adapted by many models for listening behavior for embodied conversa-
tional agents. Researchers have realized that the generation of these types of listener
responses each require a different approach. For the generation of generic listener re-
sponses researchers have adopted the development of reactive models, while for the
generation of specific listener responses deliberate models are developed. Further-
more, the reactive models use more shallow feature, whereas the deliberate model
use more semantic features. Since listening behavior includes both types of responses
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both approaches ultimately need to be merged and to coordinate with each other.
In this section some examples of both types of models for embodied conversational

agents are presented.

1.2.1 Reactive Models

Reactive models for listening behavior are focussed on the actions of the speakers.
Actions of the speaker directly determine whether a listener response is generated or
not. These models analyze features extracted from the audio and video signals that
record the behavior of the speaker. In these features the reactive models are looking
for patterns in the behavior of the speaker that are associated with listener responses.
The patterns these models are looking for are based on observations in corpora of
human-human interactions. The models are either handcrafted based on results of
conversational analyses or automatically learned with machine learning techniques.

The listening behavior of the Gandalf system [138] reacts to pauses from the
speaker. After a pause with a duration of 110 ms the system generates a verbal or
nonverbal listener response. Similar to the Gandalf system, the REA system [26] uses
pauses to detect suitable moments for listener responses.

Maatman et al. [102] also generated the listening behavior of the Rapport agent
with a reactive model. The model consists of a set of rules found in literature that
directly match behavioral patterns of the speaker to reactive behavior from the lis-
tener. Head nods are generated in reaction to lowered pitch and raised loudness in
the speech signal. When a disfluency is detected in the speech signal a posture shift,
gaze shift and/or frown is generated. Furthermore, postures, gaze and head ges-
tures of the speaker are mimicked. In a second version of the Rapport agent [80] the
handcrafted rules are replaced by data-driven models.

Many more reactive models have been developed besides the ones that are applied
in an embodied conversational agent. These listener response prediction models are
developed and evaluated on corpora of example human-human interaction. A more
comprehensive overview of work on such reactive listener response prediction mod-
els will be presented in Chapter 6. The computational models of listening behavior
developed in this thesis are also reactive listener response prediction models.

1.2.2 Deliberative Models

Specific listener responses can be seen as co-telling acts in which the listener gets in-
volved in the conversation by showing their attitude towards, assessment of or (short)
contribution to what has been said by the speaker. For automatic generation of such
listener responses for embodied conversational agents more elaborate internal rep-
resentations about emotions and attitudes may be required. The agents needs to
recognize and interpret what has been said and form an attitude towards this. For
this behavior detecting patterns in the speaker’s actions may not suffice: reasoning
about the internal state of the listener may be required as well. Deliberative models
for specific responses include this reasoning. Many of the deliberative models include
a reactive component as well.

Kopp et al. [90] proposed a deliberative model for listening behavior for the
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embodied conversational agent Max that works with textual user input. The model
reasons about five concepts to determine the listening behavior. These five concepts
are Contact, Perception, Understanding, Acceptance and Emotion/Attitude. Contact
represents whether the embodied conversational agent is still in contact with the user.
Perception is run on a word-by-word basis and evaluates whether the system knows
each word. Understanding represents whether the user input can be succesfully in-
terpreted. Acceptance evaluates whether the user input complies with the agent’s
current beliefs, desires or intentions. Emotion/Attitude represents the emotional re-
action as appraised by the emotion system of the embodied conversational agent. A
probabilistic rule-based system is in place that reacts to events triggered by changes
of these five concepts.

Bevacqua et al. [16] proposed a deliberative model for the Sensitive Artificial
Listener agent. Besides the verbal and nonverbal behavior of the speaker the model
generated backchannels based on the speaker’s interest level and the mental state of
the agent. This mental state describes the attitude of the agent towards the interac-
tion. In the SAL agent four mental states are defined. These four mental states are
angry/argumentative, gloomy, happy and sensitive/pragmatic.

Wang et al. [148] proposed a deliberative model for listening behavior that is ca-
pable of changing its behavior based on the current conversational role of the agent.
The model discriminates the listener roles of addressee, side-participant, eavesdrop-
per and overhearer. The model combines the incoming signals of the speaker with the
current role and goals of the listener to determine the listening behavior. The agent
is capable of expressing understanding, (mirror) emotion, thinking behavior and role
switching behavior, such as expressing intentions to enter or leave the conversation.
All these require incremental understanding and assessment of the speaker.

1.3 Contribution

In this section an overview of the contributions will be given. This thesis is a method-
ological exploration of individual differences and similarities in listening behavior and
how these differences and similarities can be used in the development and evaluation
of listener response prediction models for embodied conversational agents.

The contributions of the thesis can summarized by the following.

• The Concept of Response Opportunities - Central to the work presented in
this thesis is the concept of response opportunities. A response opportunity can
be defined as a window in time where a listener response is appropriate. The
concept is similar to the concept of turn-transition relevance places [129], a con-
cept known in conversation analysis for places where it is relevant for another
interlocutor to take the turn. Recently, Heldner et al. [70] referred to the con-
cept of response opportunities as backchannel relevance space.

• Methods for Collecting Multiple Perspectives on Listening Behavior - One of
our goal is to be able to recognize these response opportunities in an interaction.
For this we need an annotated data set of human-human recordings in which all
response opportunities in the interactions are known. But since giving a listener
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response at a response opportunity is optional, no listener will respond to all
response opportunities. This means that not all response opportunities in an
interaction are identified by looking at the listener responses of a single listener,
which is usually what is recorded. To discover all response opportunities in
an interaction the listener responses of multiple listeners are necessary. In this
thesis we will explore and compare different methods to collect these listener
responses of multiple listeners. In this thesis we will call a collection of listener
responses of a single individual a perspective.

• Conversational Analysis of the Characteristics of Response Opportunities -
To be able to recognize response opportunities we will analyze the actions of the
speaker in the seconds before a response opportunity. Since we identified each
response opportunity by combining the multiple perspectives from the previous
contribution, we also know how many listeners responded to each response
opportunity. This gives us a measure for the graded optionality of the response
opportunities - we assume that there are various degrees to how optional it is
to give or not to give a listener responses. In the analysis we look into which
actions of the speaker causes this graded optionality or in other words what
makes some response opportunities more compelling to respond to than others.

• Methods for Learning Listener Response Prediction Models using Differ-
ences and Similarities between Interlocutors - The ultimate goal of the pre-
sented research is to build a computational model to generate listening behavior
for an embodied conversational agent. The focus of the thesis towards this goal
is on reactive listener response prediction models. These models look for be-
havioral patterns in the speaker’s actions and relate these to the likelihood of
a listener response. Methods are explored that use the multiple perspectives
to develop more accurate listener response prediction models and performance
measures for these models.

1.4 Overview

Development of computational models of listening behavior for embodied conversa-
tional agents typically follows a series of steps. As a first step recordings of human-
human conversations are collected. The purpose for these recordings is to analyze the
listening behavior. The results of these analyses give pointers to the interplay between
behaviors of the speaker and the decision of the listener to give a listener response or
not. The analyses give insight into which behaviors of the speaker are important to
measure as input features to be able to generate the appropriate listening behavior.
Based on this knowledge and using the recordings as data a listener response predic-
tion model can be learned. Finally, the prediction model can be evaluated either by
comparing the predictions of the model to the listening behavior in the recordings or
by subjective evaluation of the generated behavior by human observers.

The structure of the thesis will follow along this development cycle for listener re-
sponse prediction models. In Part I the methods of data collection will be introduced.
Part II will cover the conversational analyses performed on the recorded corpus. In
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Part III the prediction models will be learned and evaluated. The thesis will be con-
cluded in Part IV reflecting on the thesis and looking ahead to future work.

1.4.1 Data Collection

Part I of the thesis will present the data collection methods introduced in this thesis.
The goal of the data collection is to collect multiple perspectives on listening behavior
to identify the response opportunities in an interaction.

In Chapter 2 the Parallel Recording method will be introduced. With this method
the MultiLis corpus was recorded which will be used throughout the thesis. In this
method three listeners are recorded in interaction with the same speaker. Due to the
setup of the recording only one of the listeners can be seen by the speaker, but all
believe they are addressee in the interaction. By recording three listeners in parallel
three perspectives of appropriate listening behavior are collected. By combining these
perspectives response opportunities can be identified. These response opportunities
are moments in time where a listener response can be given. By looking at the num-
ber of listeners that responded to a response opportunity we can look at the graded
optionality of response opportunities.

Chapter 3 will confirm that recording three listeners still does not give a complete
coverage of all the response opportunities in the interaction. The Parasocial Sampling
method will be presented as a method to collect even more perspectives of appropri-
ate listening behavior. In the parasocial sampling method first introduced by Huang
et al. [79] subjects watch recorded speakers and give listener responses as if they
were interacting with the speaker. These parasocial listener responses are recorded
on the keyboard. Results will be presented validating this data collection method as
a substitute for actual recordings for the purpose of collecting the timing of listener
responses. Combining the collected perspectives with the parallel recorded perspec-
tives increases the coverage of all the response opportunities in the interaction and
further diversifies them into important and less important response opportunities.

Beside the parasocial sampling method Chapter 3 will also introduce the Indi-
vidual Perceptual Evaluation method. In this method generated listener responses
are individually evaluated on their appropriateness. Subjects observe interactions be-
tween a recorded speaker and a virtual listener. The subjects are tasked with judging
each individual listener response from the virtual listener on appropriateness. When
the subjects judge a listener response to be inappropriate they hit a key on the key-
board. This evaluation method can be used to collect perspectives on inappropriate
listening behavior as well as evaluating the performance of a virtual listener on the
level of individual behaviors instead of on a general impression.

1.4.2 Conversational Analysis

Part II of the thesis will present the conversational analysis results on the collected
perspectives on appropriate and inappropriate listening behavior. The goal of the
conversational analysis is to analyze the relationship between the behavior of the
speaker and presence or absence of a response opportunity.

Before starting the actual conversational analyses a manipulation check will be
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performed in Chapter 4 to confirm that there are no significant differences in the be-
havior of the displayed listener that can be seen by the speaker and the two concealed
listener that cannot be seen. The manipulation check will show that the closing of the
interaction loop between the speaker and the two concealed listeners did not change
their behavior significantly. Thus, for the conversational analyses the listeners can be
regarded as equal.

In Chapter 5 the results of the conversational analyses will be presented. In the
conversational analyses the behavior of the speaker around the response opportu-
nities collected in Part I will be analyzed. The conversational analysis starts with
a qualitative study looking at the content of the speaker’s speech in the vicinity of
response opportunities and inappropriate moments for listener responses. Observa-
tions will show relations to sentence structure (listener responses before (part of) the
rheme is completed are considered inappropriate), conversational structure (listener
responses in reaction to a summarizing or refining statement are more appropriate)
and proximity of earlier responses (producing two similar listener responses in close
succession is considered inappropriate).

Analysis of the speech activity of the speaker shows that response opportunities
are placed near or right after the end of an utterance. This will be illustrated by an
analysis of the presence or absence of speech in the vicinity of response opportunities
and the energy of the speech signal. Furthermore, results will be presented that show
that the pitch of the speech either falls or rises to low and high values, respectively,
starting 750 ms before the response opportunity. Finally, results will be presented
that show that the speaker specifically looks at the listener at response opportunities.
All these cues for response opportunities are found to be more frequent at response
opportunities where more than one listener responded.

1.4.3 Learning Prediction Models

Part III of the thesis will present three listener response prediction models learned on
the MultiLis corpus. The experiments focus on finding methods to use the different
perspectives on listening behavior and differences in speaking behavior to develop
more accurate and adaptive listener responses prediction models and more accurate
evaluation metrics. Each models focusses on improving different aspects of the learn-
ing process. The first two models will focus both on acquiring more accurate ground
truth samples. The first model will focus on acquiring more accurate positive sam-
ples and the second model on acquiring more accurate negative samples. The third
model focusses on better handling the learning data by splitting the data and learning
multiple models that each represent a different speaking style.

Before presenting the three listener response prediction models an overview of the
state-of-the-art will be presented in Chapter 6. The survey will focus on highlighting
differences between approaches with regard to the corpus the model is learned on,
the features that are used as input for the models, the modeling technique that is used
and the method of evaluation.

The listener response prediction model that will be presented in Chapter 7 focusses
on selecting better positive samples for the ground truth labels. The parallel recording
method identified many response opportunities each with one, two or three listeners
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that responded to them. The experiments will show that using only the response op-
portunities with responses from two or more listeners as positive ground truth labels
performs better than alternative selections. Furthermore, a new evaluation measure
will be introduced which values correctly predicting response opportunities with a re-
sponse from the majority of the listeners more highly, while not ignoring the response
opportunities where only a minority of the listeners responded.

The listener response prediction model that will be presented in Chapter 8 fo-
cusses on selecting better negative samples for the ground truth labels. The presented
approach will use the perspectives of inappropriate moments for listener responses
collected using the Individual Perceptual Evaluation method. The model is iteratively
learned. After each iteration the model is evaluated using the Individual Perceptual
Evaluation method. The collected inappropriate moments from this evaluation are
used in a following iteration as negative samples of the ground truth for learning.
The results will show that the listening behavior generated by this prediction model
is more appropriate according to the human observers.

The listener response prediction model that will be presented in Chapter 9 fo-
cusses on adapting to the speaker. The focus of this approach is on acknowledging
that people differ from each other and that one listener prediction model will proba-
bly not work for every speaker. Speakers have their own voice characteristics, fluency
of speech and other behavior patterns. Because of these differences there are differ-
ences in the way response opportunities are cued by these speakers. The presented
speaker-adaptive model will learn individual models for different speakers. When en-
countering a new speaker the model will analyze the characteristics of the speaker
and compare those to the characteristics of the speakers it has a model for. The model
that is learned on the closest matching speaker is selected. Results will show that this
speaker-adaptation results in a significant improvement in performance.

In Chapter 10, the final chapter of Part III, a method will be presented to integrate
these listener response prediction models into an embodied conversational agent.
Based on the time since the last generated listener response, the proposed dynamic
thresholding method varies the threshold that peaks in the prediction value curve
need to exceed in order to be selected as a suitable place for a listener response. The
proposed formula for this dynamic threshold includes a parameter which controls
the response rate of the generated behavior. This gives the designer of the listening
behavior of a virtual listener the tools to adapt the behavior to the situation, targeted
role or personality of the virtual agent. Results will show that the generated behavior
is more stable under changing conditions than the behavior of the traditional fixed
threshold.

So, to conclude, this thesis will combine work in the areas of data collection, con-
versational analysis and machine learning to develop computational models for the
generation of listening behavior for embodied conversational agents. The contribu-
tions to each of these areas will focuss on capturing, analyzing and modeling the
similarities and differences in listening behavior that exist between individuals. Part
IV will reflect on these contributions and will discuss directions for future work.
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Part I

Collection of Multiple Perspectives





2
Parallel Recording

A listener response is usually not given at the listener’s whim. These responses are
signals from the listener towards the speaker that the information has been received,
understood and potentially evaluated by the listener. They are tied to actions of the
speaker as part of the grounding process that takes place between interlocutors. In an
interaction there are specific moments where the listener can give a response, namely
the moments where the speaker provides the listener with information that needs to
be grounded. We call the moment a response can be given by a listener a response
opportunity.

The data that will be presented in this chapter, involves conversations in which a
speaker was matched with several listeners where everyone was made to believe they
were in a one-to-one conversation. There are moments in this data where only one of
the listeners produces a listener response. This indicates that listeners do not need to
produce a listener response at every response opportunity. 1

However, a typical listener will not provide a listener response at each response
opportunity. These moments are opportunities and there is no fixed rule that states
that a response is required. This characteristic optionality of listening behavior brings
a challenge in building a computational model of said behavior. This causes variation
in the type, timing and number of listener responses between individuals. One passed
up opportunity for a listener response will not immediately break the interaction, but
a total absence of responses will. The question is, at which moments is it essential to
respond as a listener and which moments can be passed up.

In order to gain insight into which response opportunities can be passed up and
which require a response, we need multiple perspectives on appropriate listening
behavior in response to certain speaker actions. One example of a listener will not
give us complete coverage of all response opportunities in the interaction.

Typically a corpus only has one perspective on appropriate listening behavior
recorded and covers only the response opportunities to which the recorded listener

1Of course taking a more individual, cognitive perspective, one could say that what counts as a
response opportunity for one listener may not count as a response opportunity for another. The point of
view adapted in this thesis is that a response opportunity in the data is a moment which at least one of
the listeners (or perspectives) regards as an opportunity to give a listener response.
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has responded to. Examples of such corpora on which listener response analyses
have been conducted include the HCRC Map Task Corpus [4, 28], the CID Cor-
pus [13, 12, 11] and the Rapport Corpus [62, 108]. In these corpora one example of
appropriate listening behavior is recorded in response to the actions of the speaker.
However, another individual placed in the same interaction will most likely not act
in exactly the same way. This listener will most likely respond to partially the same
response opportunities and partially other ones. Even if the response is to the same
opportunity, it can take a different form.

One could argue that corpora that feature multi-party conversations, such as the
AMI Corpus [24, 74], includes multiple examples of appropriate listening behavior.
Oftentimes one of the participants is speaker, while the other three are listening.
However, frequently the floor [68] of the interaction organizes such that the speaker
is addressing one of the participants, while the other two overhear this (short) in-
teraction between the two. The behavior of an addressee is different than that of
an overhearer [54, 35, 98, 49]. The speaker expects responses from the addressee,
while none are expected from the overhearer. Thus, an addressee is more likely to
respond than an overhearer. Even if the speaker is addressing all three of the remain-
ing participants, the speaker can only look at one of them at a time, so conditions are
not exactly the same for all three. While the responses from the overhearer can be
used to identify response opportunities passed up by the addressee, the differences
between addressees and overhearers make an analysis of the graded optionality of
the response opportunities flawed.

To overcome this, we recorded a corpus where the conditions are exactly the same
for all listeners. All three listeners perceive themselves to be the addressee of the
interaction. The three perspectives on appropriate listening behavior in this corpus
will give us a more complete coverage of all response opportunities in the interaction.

In the remainder of the chapter the corpus will be introduced in more detail. In
Section 2.1 the setup for the data collection will be explained. In Section 2.2 the
details about the recordings and annotations will be presented.

2.1 The Data Collection

The goal of this data collection was to record multiple perspectives of appropriate lis-
tening behavior in response to actions of a speaker. Therefore, we need recordings of
multiple listeners in response to the same speaker and trying to ensure that the reac-
tions of these listeners are as natural as possible. We, therefore, needed to create the
illusion that the listeners believed that they were the only listeners in the interaction
and thereby the addressee of the speaker. Once this illusion would be broken people
may change their behavior pattern from addressee to overhearer. An effect of this
might be a lower response rate, since an overhearer does not need to give responses
to the speaker, since the speaker does not expect them to.

In this corpus we aimed to record interactions between one speaker and three
listeners. To achieve this, without the participants realizing this fact, the interactions
were video-mediated. The listeners were made to believe they are having a one-on-
one conversation with the speaker. Also the speaker was unaware of the special setup,
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Figure 2.1: Picture of the cubicle in which each participant was seated. It illustrates the interro-
gation mirror and the placement of the camera behind it which ensures eye contact.

seeing only one of the listeners.

The data collection designed to record the corpus is presented in more detail in the
following sections. The setup of the data collection will be discussed in Section 2.1.1.
The procedure during recording will be discussed in Section 2.1.2, the tasks of the
participants are discussed in Section 2.1.3 and the extra data that we collected such
as the demographics, personality of participants will be presented in Section 2.1.4.

2.1.1 Setup

Each of the participants sat in a separate cubicle. The digital camcorders which
recorded the interaction, were placed behind a one-way mirror onto which the in-
terlocutor was projected (see Figure 2.1). This ensured that the participants got the
illusion of eye contact with their interlocutor. In Figure 2.2 one can see that the lis-
teners appear to be looking into the camera which was behind the mirror. This video
was also what the participants saw during the interaction. All participants wore a
headphone through which they could hear their interlocutor. The microphone was
placed at the bottom of the autocue set up and was connected to the camcorder for
recording.

During the interaction speakers were shown one of the listeners (the displayed
listener) and could not see the other two listeners (the concealed listeners). All three
listeners saw the recording of the same speaker and all three believed that they were
the only one involved in a one-to-one interaction with that speaker. Distribution
of the different audio and video signals was done with a Magenta Mondo Matrix III,
which is a UTP switchboard for HD-video, stereo audio and serial signals. Participants
remained in the same cubicle during the whole experiment. The Magenta Mondo
Matrix III enabled us to switch between distributions remotely.
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2.1.2 Procedure

In total eight sessions were recorded. For each session there were four participants
invited (in total there were 29 male and 3 female participants, with a mean age of
25). At each session, four interactions were recorded. The participants were told
that in each interaction they would have a one-on-one conversation with one other
participant and that they would either be a speaker or a listener. However, during
each interaction only one participant was assigned the role of speaker and the other
three were assigned the role of listeners. Within a session, every participant was
a speaker in one interaction, was once a displayed listener and appeared twice as
concealed listener.

In order to be able to create this illusion of one-on-one conversations we needed
to limit the interactivity of the conversation, because as soon as the displayed listener
would ask a question or start speaking, the concealed listeners would notice this in
the behavior of the speaker and the illusion would be broken. Therefore the listeners
were instructed not to ask questions or take over the role of speaker in any other way.
However we did encourage them to provide short feedback to the speaker.

2.1.3 Tasks

The participants were given tasks. The participants that were given the role of speaker
during an interaction either had to retell the events from a video clip or give the
instruction for a cooking recipe. The listeners had the task to remember as much as
possible.

For the retelling of the video speakers were instructed to watch the video care-
fully. For the data collection the 1950 Warner Bros. Tweety and Sylvester cartoon
“Canary Row”2 and the 1998 animated short “More” by Mark Osborne3 were used.
The speaker had to remember and tell as many details as possible, since the listener
would be asked questions about the video after the interaction. To give the speakers
an idea of the questions which were going to be asked, they received a set of 8 open
questions before watching the video. After watching the video they had to give the
questions back so that they would not have anything to distract them.

After the retelling both the speaker and the listeners filled out a questionnaire with
16 multiple choice questions about the video. Each question had four alternative
answers plus the option “I do not know” and for the listener the extra option “The
speaker did not tell this”.

For the second task the speaker was given 10 minutes to study a cooking recipe.
As stimuli a tea smoked salmon recipe and a mushroom risotto recipe were used.
After the interaction both the listener and the speaker needed to reproduce the recipe
as completely as possible in the questionnaire afterwards. As performance measure
the reproduction of the recipe by the listeners was scored. Two points could be scored
for the title and the number of persons the recipe was intended for; for the items
on the ingredient list 23 points; for the description of the procedure 25 points; for a
maximum total of 50 points.

2Canary Row (1950): http://www.imdb.com/title/tt0042304/
3More (1998): http://www.imdb.com/title/tt0188913/
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To control for differences in the quality of the summary of the video or reciting of
the recipe between interactions, the three listeners were ranked among themselves.
The listener with the best score received a 1, the second best a 2 and the third best a
3. Ex aequo listeners received the same ranking.

2.1.4 Measures

Before the recordings we asked participants to fill out their age and gender and we
had them fill out personality and mood questionnaires. For personality we used the
validated Dutch translation of the 44 item version of the Big Five Inventory [85]. For
mood we used seven out of eleven subscales from the Positive and Negative Affect
Schedule - Expanded Form (PANAS-X, 41 items) [155] and the two general positive
and negative affect scales. Furthermore we used the Profile of Mood States for Adults
(POMS-A, 24 items) [137]. For both PANAS-X and POMS-A we used unvalidated
Dutch translations made by the authors. Participants were instructed to assess their
mood of “today”.

After each interaction speakers filled out the Inventory of Conversational Satis-
faction (ICS, 16 items) [157], questions about their task performance (5 items) and
questions about their goals during the interaction (3 items). The listeners filled out an
adapted version of the rapport measure [62] with additional questions from the ICS
(10 items in total, e.g. “There was a connection between the speaker and me.”). Some
questions of the 16 items ICS relate to talking, which the listener did not do in our
experiment, so they were left out. Furthermore the listeners answered six questions
about the task performance of the speaker, such as “The speaker was entertaining” or
“The speaker was interested in what he told”. All questions were 5-point Likert Scale.

After the complete session, when all four interactions were finished subjects were
debriefed and were asked which interaction they preferred; whether they had be-
lieved the illusion of always having one-on-one interaction, and if not, at which mo-
ment they had noticed this; in which interaction they thought the speaker could see
them; about the delay of the mediated communication, audio and video quality (3
items).

2.2 The MultiLis Corpus

The main motivation for doing the experiment was to collect the recordings of the
interactions. In this section the more details about the resulting recordings and the
collected annotations from the recordings are discussed.

2.2.1 Data

In total 32 interactions were recorded (8 for each task), totalling 131 minutes of data
(mean length of 4:06 minutes). All the interactions were in Dutch.

Audio and video for each participant was recorded in synchrony by the digital
camcorders. Synchronisation of the four different sources was done by identifying
the time of a loud noise which was made during recording and could be heard on all
audio signals.
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Figure 2.2: Screenshot of a combined video of the four participants in an interaction.

Videos are available in high quality (1024x576, 25fps, FFDS compression) and
low quality (640x360, 25fps, XviD compression). Audio files are available in high
quality (48kHz sampling rate) and low quality (16kHz sampling rate). Furthermore
a combined video (1280x720, 25fps, XviD compression) of all four participants in a
conversation is available (for a screenshot, see Figure 2.2).

2.2.2 Annotations

Speakers were annotated on eye gaze and smiles. Listeners were annotated on head,
eyebrow and mouth movements and any speech they produced was transcribed as
well. For this annotation we used the ELAN annotation tool [20].

For the listeners the annotations were made in a three step process. First the
interesting regions with listener responses were identified. This was done by looking
at the video of the listener with sound of the speaker and marking moments in which
a response of the listener to the speaker was noticed. In the second step these regions
were annotated more precisely on head, brows and mouth movements. Speech of
the listener was also transcribed by hand. In the third and final step the onset of the
response was determined.

In the following subsections the annotation scheme for each modality will be ex-
plained in more detail. In each annotation scheme left and right are defined from the
perspective of the annotator.

EYE GAZE Annotation of the speakers’ gaze provides information about whether
they were looking into the camera (and therefore looking at the listener) or not and
whether there was blinking. For each of these two features a binary tier was created.
Annotations were done by two annotators who each annotated half of the sessions.
One session was annotated by both. Agreement (calculated by overlap / duration )
for gaze was 0.88 and for blink 0.66.

HEAD For listeners the shape of the head movements. An annotation scheme of 12
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categories was developed. The 12 categories and the number of annotations in each
category are given below. Several movements had a lingering variant. Lingering
head movements are movements with one clear stroke followed with a few more
strokes that clearly decrease in intensity. If during this lingering phase the intensity
or frequency of the movement increases again a new annotation is started. In the
following overview the first number is the number of instances of the annotation and
the second number the number of instances of the lingering variant.

• Nod (681 & 766 lingering) - The main stroke of the vertical head movement is
downwards.

• Backnod (428 & 290 lingering) - The main stroke of the vertical head movement
is upwards.

• Double nod (154 & 4 lingering) - Two repeated head nods of the same intensity.

• Shake (17) - Repeated horizontal head movement.

• Upstroke (156) - Single vertical movement upwards. This can either occur
independently or just before a nod.

• Downstroke (43) - Single vertical movement downwards. This can either occur
independently or just before a backnod.

• Tilt (24 left & 15 right) - Rotation of the head, leaning to the left or right.

• Turn (8 left & 11 right) - Turning of the head to left or right direction.

• Waggle (7) - Repeated nods accompanied by multiple head tilts.

• Sidenod (9 & 2 lingering) - Nod accompanied by a turn to one direction (6 left
& 5 right).

• Backswipe (18 & 2 lingering) - Backnod which is not only performed with the
neck, but also with the body which moves backwards.

• Sideswipe (3 left & 5 right) - Sidenod which is not only performed with the
neck, but also with the body which moves to that direction.

Keep in mind that head movements are annotated only in areas where a listener
response was identified in the first step of the annotation process. Especially turns
and tilts occured more often than reflected in these numbers, but the others were not
categorized as listener responses.

EYEBROWS For the listeners eyebrow raises and frowns were annotated. It was indi-
cated whether the movement concerned one or both eyebrows. When one eyebrow
was raised or frowned, it is indicated which eyebrow (left or right) made the move-
ment. In total this layer contains 200 annotations, 131 raises and 69 frowns. These
numbers include the annotations in which only one eyebrow was raised or frowning
occurred with one eyebrow.
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MOUTH The movements of the mouth were annotated with the following labels (457
in total): smile (396), lowered mouth corners (31), pressed lips (22) and six other
small categories (8). Especially with smiles the end time was hard to determine. If
the person was smiling, but increases the intensity of the smile, a new annotation was
created.

SPEECH For the speakers we collected the results of the automatic speech recognition
software SHoUT [81]. For listeners the speech was transcribed. In total 186 utter-
ances were transcribed. The most common utterances were “uh-huh” (76), “okay”
(42) and “ja” (29).

RESPONSES This annotation layer was created in the third step of the annotation
process of the listener. What we refer to as a listener response can be any combination
of these various behaviors, for instance, a head nod accompanied by a smile, raised
eyebrows accompanied by a smile or the vocalization of uh-huh, occurring at about
the same time. For each of these responses we have marked the so-called onset (start
time). The onset of a listener response is either the stroke of a head movement, the
start of a vocalization, the start of eyebrow movement or the start of a mouth move-
ment. When different behaviors combine into one listener response, either the head
movement or vocalization was chosen as onset (whichever came first). This resulted
in 2456 responses. If there was no head movement or vocalization present, either the
eyebrow or mouth movement was chosen as onset (whichever came first). The cor-
pus includes 233 responses with mouth movement at the onset and 106 response with
eyebrow movement at the onset. In total 2796 responses are in the corpus. Unless
otherwise indicated, we have only used the 2456 responses including a head gesture
and/or vocalization for the remainder of the thesis.

2.3 Consensus Perspective

We set out to record this corpus to get a wider coverage of the response opportunities
in an interaction and to be able to analyze the graded optionality of these opportuni-
ties. Therefore, we need to combine the three perspectives on appropriate listening
behavior into a consensus perspective. The consensus perspective can be defined as
the complete coverage of all identified response opportunities in a corpus and for
each identified response opportunity, the number of listeners that responded to that
opportunity.

To create a consensus perspective, we need to identify which responses from dif-
ferent listeners are in response to the same response opportunity. A response oppor-
tunity is not a single point in time, but there is a window of opportunity in which
the speaker expects the response to be given by the listener. How big this window
is, will differ between response opportunities and is mostly controlled by the speaker.
The most reliable way to create a consensus perspective is to have annotators group
listener responses from different listeners that are in response to the same response
opportunity. This was done for 8 out of 32 interactions and a more in-depth analysis
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Algorithm 1 Consensus perspective building algorithm
Require: sorted allResponses from all Listeners
Require: consensus window

while allResponses is not empty do
firstResponse = earliest in allResponses
tStart = start time of firstResponse
thisResponseOpportunity = all responses starting in (tStart +

consensus window)

lastResponse = latest in thisResponseOpportunity
tEnd = start time of lastResponse
allResponseOpportunities = allResponseOpportunities+ [tStart, tEnd]

allResponses = allResponses− thisResponseOpportunity
end while
return allResponseOpportunities

of these interactions will be presented in Chapter 3.

2.3.1 Consensus Perspective Algorithm

Since we did not have the time to collect annotations for the whole corpus, we de-
veloped an algorithm to create the consensus perspective for all interactions auto-
matically. The algorithm is based on the proximity of listener responses; listener re-
sponses that are closely grouped together are considered to be reactions to the same
response opportunity. For this we need to specify “closely grouped together” further.
We need to define the maximum width of the response opportunity for the algorithm,
the so-called consensus window. We do not want the algorithm to create response
opportunities that included more than one listener response from the same listener.
Therefore, we analyzed the recordings and found the minimal gap between two lis-
tener responses from the same listener to be 714 ms. To ensure that our algorithm
did not group two responses from the same listener, the consensus window was set to
700 ms.

The algorithm is presented in Algorithm 1. A forward looking search is performed.
When an hitherto unassigned response is encountered, the algorithm checks whether
there are more responses which start within the consensus window of 700 ms from
the start time of this response. If there are, all of these are grouped together with
the response. The start time of the identified response opportunity is the onset of
the first response. The end time of the identified response opportunity is the onset of
the latest response included in the response opportunity. Note that this means that
if a response opportunity with only one response is created, the start and end time
of the response opportunity are identical. After a response opportunity is created we
continue our forward looking search for the next unassigned response.

In Figure 2.3 an example is given of the consensus perspective building algorithm.
At time 1.0 s the algorithm has encountered a listener response from listener 1. It
checks whether there are more responses from other listeners within the consensus
window of 700 ms. There is a response from listener 2 at time 1.2 s, thus these are
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Figure 2.3: Example of the consensus perspective building algorithm. The algorithm identifies
three response opportunities by grouping the responses from the different listeners that fall within
the consensus window. The width of the response opportunity is determined by the start times of
the first and last responses within the consensus window.

grouped into consensus instance 1, which starts at time 1.0 s and ends at time 1.2 s.
The algorithm continues with the next unassigned response and repeats the process
and creates a consensus instance at 2.1 s from the response from listener 3 and from
3.5 s to 4.0 s, by combining the three responses from listener 3, 1 and 2.

The algorithm was applied on all 32 interactions in the MultiLis corpus. From
the 2456 responses including a head movement and/or vocalization the algorithm
created a consensus perspective identifying 1733 response opportunities. There are
1140 response opportunities with a response from one listener (RO1), 465 response
opportunities with responses from two listeners (RO2) and 128 response opportuni-
ties with a response from all three listeners (RO3).

2.3.2 Coverage of Response Opportunities

One of the reasons we recorded the MultiLis corpus was to increase the coverage of
the response opportunities in an interaction. To analyze our success towards this goal,
we applied the consensus perspective building algorithm to all subsets of listeners
perspectives.

Figure 2.4 illustrates the results of this analysis. If we use only one listener per-
spectives to identify response opportunities in the interactions we will identify 818 re-
sponse opportunities on average, depending on which listener perspectives are used.
When we use two listener perspective we identify on average 1336 response oppor-
tunities, an increase of 63%. Finally using all three listener perspectives a total of
1733 response opportunities are identified, another increase of 30% over the previ-
ous number.

So, with the two additional listener perspectives over the one perspective in a
traditional corpus, we have more than doubled the coverage of response opportunities
in our corpus; from 818 response opportunities to 1733 response opportunities, an
increase of 112%.



Parallel Recording | 23

600

800

1000

1200

1400

1600

1800

1 2 3

N
u

m
b

er
 o

f 
Id

en
ti

fi
ed

  
R

es
p

o
n

se
 O

p
p

o
rt

u
n

it
ie

s 

Number of Listeners 

Figure 2.4: Graph illustrating the effect of adding multiple listener perspectives on the coverage
of response opportunities in an interaction.
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Figure 2.5: Sample of the distribution of response opportunities in the MultiLis Corpus.

2.4 Conclusion

In this chapter we have presented the MultiLis corpus. For this corpus we recorded in-
teractions between one speaker and three listeners. The three listener were unaware
of each other. By combining the listener perspectives of these three listeners into a
consensus perspective, we have demonstrated that the coverage of so-called response
opportunities, moments in an interaction where a listener response is possible or even
expected by the speaker, is increased by 112%.

To illustrate the increase in coverage of response opportunities and the graded
optionality, we will take a closer look a sample from one of the interactions in our
corpus. Figure 2.5 represents a segment of 48 seconds from one of the interactions4.
It shows the distribution of response opportunities in this segment. The horizontal
axis represents time. The response opportunities in these 48 seconds found in the
MultiLis corpus are indicated by red bars. The height of these bars represents the
amount of recorded listeners that gave a response at this response opportunity.

The segment is taken from an interaction where agreement between listeners is
relatively high. In this segment there are four response opportunities with three lis-

419.1 to 1:06.5 seconds from interaction 9
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tener responses, one with two listener responses and six with one listener response.
No listener performed a listener response at all these response opportunities. This
illustrates that with this corpus we have a more complete view of all the opportuni-
ties for a listener response. In the following chapters we will keep returning to this
segment.



3
Parasocial Sampling

The previous chapter has shown that recording two additional listeners increases our
coverage of response opportunities by 112%. However, we presumably have not yet
reached total coverage of all response opportunities. There are still moments that are
appropriate moments to respond to as a listener, but none of our listeners have re-
sponded at that point in time. More listeners are needed to collect a complete picture
of all response opportunities in an interaction and to get a good view of the graded
optionality of each response opportunity. However, recording even more listeners in
parallel is a complicated and costly operation.

Using recordings of conversations is not the only way in which listener responses
have been studied. Watanabe and Yuuki [154] built a voice reaction system, a sys-
tem that could generate listener responses based on the speaker’s voice. To develop
their system they used data, where two listeners intentionally nodded to the speaker’s
speech. The two listeners heard a telephone message uttered by a speaker and they
visually nodded in response, which was recorded by using a videorecorder.

Later, Noguchi and Den [114] streamlined this process using keys on a keyboard
to record the listener responses instead of acted nods recorded on videotape. They
presented several pause-bounded phrases consisting of a single conversational move.
Subjects involved in the experiment were asked to hit the space bar of a keyboard if
they thought it was appropriate to respond to the stimulus with a listener response.
This way, they circumvented the process of having to annotate the videotape.

Finally, Huang et al. [79] collected similar data by presenting complete interac-
tions instead of single conversational moves to their subjects. They named this collec-
tion method Parasocial Sampling (PS), after research into parasocial interaction [77].
This research suggests that individuals can engage in interaction with pre-recorded
media as if they were engaged in a natural social interaction.

3.1 Parasocial Sampling

In the following section we are going to describe the collection of perspectives using
the parasocial method from Huang et al. [79]. Parasocial listeners listened to com-
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plete interactions from the MultiLis corpus and gave their parasocial perspective on
appropriate listening behavior.

The goal of the experiment was two-fold. First and foremost we wanted to col-
lect more perspectives of appropriate listening behavior to increase the coverage of
response opportunities in our corpus and be able to gain more insight into the vari-
ation of the behavior. Which response opportunities seem to be mandatory, which
are preferred by most and which are only occasionally responded to? Discriminating
between these different types of response opportunities becomes more reliable with
more perspectives. Furthermore, we wanted to compare the parasocial perspectives
to the parallel recorded perspectives in terms of numbers of responses given, timing
of these responses and the individuality of the captured behavior to assess the validity
of the parasocial alternative.

For this experiment we collected parasocial perspectives for 8 out of 32 interac-
tions from the MultiLis corpus. We invited six of the eight original listeners of the data
collection and ten additional subjects. The exact procedure for this data collection will
be explained in Section 3.1.1. What the impact of these additional perspectives will
be on the coverage of response opportunities is presented in Section 3.1.2. Finally
these additional parasocial perspectives will then be compared to the original listener
perspectives in Section 3.1.3.

3.1.1 Procedure

The collection of parasocial perspectives was performed on eight interactions from the
MultiLis corpus 1. Ten months after the original MultiLis experiments we reinvited six
of the original listeners in these eight interactions to collect their parasocial perspec-
tives for the same interactions. While watching and listening to the three recordings
of the same speakers they listened to earlier, they gave responses through the key-
board. Each time they would give a listener response they were instructed to press
the spacebar of the keyboard to collect their parasocial perspective.

Furthermore, we invited ten new participants to collect their parasocial perspec-
tives on these interactions. Each of these participants gave their parasocial perspec-
tives on four interactions. Thus, for each of the eight interactions, we have three
original listener perspectives and seven or eight parasocial perspectives. From these
perspectives there are five perspectives from the new participants and two or three
perspectives from the original listeners, depending on whether one of them was the
speaker in that interaction or not.

3.1.2 Coverage of Response Opportunities

So, let us take a look at how much the additional parasocial sampling perspectives
have increased the coverage of response opportunities. For this we combined the
original three listener perspectives with the five parasocial perspectives of the new
participants. The parasocial perspectives of the original listeners were not included,
because of the unbalanced number of perspectives this created for some interactions
and the duplicate nature of these perspectives.

1Interactions 9-12, 25-28



Parasocial Sampling | 27

0

100

200

300

400

500

600

1 2 3 4 5 6 7 8

N
u

m
b

er
 o

f 
Id

en
ti

fi
ed

  
R

es
p

o
n

se
 O

p
p

o
rt

u
n

it
ie

s 

Number of Perspectives 

Figure 3.1: Graph illustrating the effect of additional parasocial sampling perspectives on the
coverage of response opportunities in an interaction.

Initially, we built the consensus perspective using the algorithm from Section 2.3.1.
After this one annotator did a manual pass over the created response opportunities
and corrected any mistakes the algorithm made according to the annotator’s judg-
ment. The mistakes made by the algorithm were always of the kind that the response
opportunities created were not inclusive enough. In other words, there were addi-
tional responses that belonged to the same response opportunity, which were not
included by the algorithm. After this we counted the number of discovered response
opportunities for each subset out of the eight perspectives available.

Figure 3.1 shows the increase each additional perspective brings. Similarly to
the original three listener perspectives the increase for the first three perspectives
for these interactions is around 114%, from 147 response opportunities with one
perspective to 314 response opportunities with three. Each additional perspective
keeps increasing the coverage, but as can be expected the increase is less with each
step. From three to four perspectives the relative increase is still 18%, but for the final
step, from seven to eight perspectives, the relative increase is only 6%. Combining
all eight perspectives gives us 525 response opportunities, a total increase of 257%
compared to only one perspective.

3.1.3 Comparison of Parallel Recording and Parasocial Sampling

In this section we will compare the two data collection methodologies; parallel record-
ing and parasocial sampling. We will look at the response rate and timing of each
methodology as well as the agreement between the two methodologies.

For the six participants that took part in both the MultiLis experiment and in the
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Figure 3.2: Histogram of the number of responses to each response opportunity in the consensus
perspective of both the MultiLis and parasocial perspectives.

parasocial sampling experiment, their collected perspectives included in both cases on
average 5,75 responses per minute. So, in both collection methods the response rate
is comparable. The ten participants that only participated in the parasocial sampling
collection responded on average 5 times per minute.

For the following analyses we also included the parasocial perspectives of the re-
invited partipants in our consensus perspective. This perspective now includes a total
of 581 response opportunities. The distribution of the number of responses to each
response opportunity in the consensus perspective is presented in Figure 3.2. Most
response opportunities have only a few responses, but there are still 15 response
opportunities with 9 responses, 3 with 10 responses and 3 with 11 responses. It is
interesting to note that all response opportunities in which 10 or 11 people agreed
and 4 response opportunities where 9 agreed that a response should be given were
from the same interaction (number 10). We will look a bit closer at the reason for
this in Section 5.1.

For now we will take a closer look at the timing of the responses to the same
response opportunity. What is the window for each response opportunity? Or in
other words, what is the range in which the different perspectives respond to the
same response opportunity? Furthermore, is there a difference in timing between the
responses of the listener perspectives and parasocial perspectives?

In Table 3.1 an overview is presented of the 581 response opportunities identified
in the eight interactions by the combination of both methods. The total mean length
of a response opportunity is 0.75 seconds and ranges from 0.01 to 2.35 seconds. Note
that response opportunities with only 1 response have no duration, since we only
have one start time to span the window of opportunity.

Next, we will look at the timing of the responses of the listener perspectives ver-
sus those from the parasocial perspective. For this analysis we measured the distance
between the start of each individual response and the beginning of the corresponding
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Number of Mean Minimum Maximum
Responses Number Duration Duration Duration

1 205 - - -
2 107 0.35 0.01 0.96
3 87 0.54 0.08 1.25
4 49 0.75 0.08 1.45
5 47 0.93 0.22 1.69
6 26 1.04 0.38 1.97
7 19 1.13 0.41 1.86
8 20 1.22 0.58 2.18
9 15 1.28 0.54 2.35

10 3 1.10 1.00 1.23
11 3 1.40 1.08 1.86

Total 581 0.75 0.01 2.35

Table 3.1: Overview of the response opportunities with minimum, maximum and mean duration
for each number of responses.

Original Behavior Original Behavior
Listener Listener Listener Listener Listener Listener

PS 1 2 3 PS 5 6 7
Lis 1 0.52 0.46 0.41 Lis 5 0.37 0.29 0.24
Lis 2 0.44 0.50 0.48 Lis 6 0.25 0.36 0.43
Lis 3 0.18 0.21 0.35 Lis 7 0.28 0.18 0.27

PS 1 0.42 0.42 0.41 PS 6 0.24 0.27 0.18
PS 2 0.27 0.37 0.35 PS 7 0.18 0.26 0.39
PS 3 0.39 0.48 0.43 PS 8 0.30 0.31 0.39
PS 4 0.24 0.26 0.52 PS 9 0.27 0.25 0.34
PS 5 0.41 0.50 0.41 PS 10 0.25 0.17 0.16

Table 3.2: Agreement between the collected parasocial perspectives for each participant and the
original listener perspectives (measured in F1 scores). The table is split into two; one for each
session of four interactions.

response opportunity. The mean distance of responses from the original listener is
0.28 seconds and for parasocial responses 0.50 seconds. Thus parasocial responses
are significantly slower than the original responses (ANOVA: F = 92, p < 0.01). So,
even though the participant for the parasocial experiment can act as if being involved
in the interaction, the combined effect of the conscious nature of the task and un-
natural physical action to collect the parasocial sampling, results in a delay of 0.22
seconds.
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In our final analysis of this data, we look at how the parasocial perspective of the
re-invited listeners compares to their original listener perspective. For this analysis
we compared the timing of the response in each of the perspectives to each other. We
counted the number of times the responses from one perspective were in response to
the same response opportunity as the other perspective. From these counts precision
and recall were calculated and combined by taking the weighted harmonic mean into
the F1 measure. Agreement varies from 0.18 to 0.52.

The agreement of each comparision is presented in Table 3.2. The table is split
into two. The left side of the table is for interactions 9 to 12 and the right part
is about interactions 25 to 28. In the first three rows the agreement between the
parasocial perspectives of the re-invited listeners is compared to the original listener
perspectives. In the bottom five rows the agreement between the new parasocial
perspectives and the original listener perspectives is presented.

If we want to know with which original listener perspective a parasocial perspec-
tive has the most overlap, we need to look for the highest number on each row. In
the table the highest number on each row is in italics. For the parasocial perspectives
of the re-invited listeners this is in four out of six cases their own listener perspective
with F1 scores ranging from 0.27 to 0.52. Thus, for four out of six listeners the closest
match with their parasocial behavior is their own recorded behavior.

If we want to know with which parasocial perspective the recorded listener per-
spective has the most overlap, we need to look for the highest number in each column.
In the table the highest number in each column is underlined. Again in four out of six
cases the closest match with their recorded listener perspective is their own parasocial
perspective, with F1 scores ranging from 0.36 to 0.52.

The fact that the parasocial perspective of a person collected ten months after the
original recordings is the closest match among all collected parasocial perspectives in
most of the cases, suggests that each listener has an individual preference to which
response opportunity they respond. Furthermore, it proves that collecting listening
behavior through the parasocial sampling method is capable of capturing this indi-
vidual preference. This makes it a viable substitute for actual recording of listening
behavior with regards to timing of listener responses. A downside of the method is the
lack of visualization of the behavior, so no analyses can be performed on how this lis-
tener would give the listener response (vocal/visual/both, upwards/downwards nod,
amplitude of the behavior, etc.).

3.1.4 Conclusion

In this section we have presented the collection of parasocial perspectives. These
parasocial perspectives were collected by asking people to give listener responses as if
they were interacting with the presented speaker, through means of the space bar on
a keyboard. We have demonstrated that these parasocial perspectives closely match
recorded listener responses in terms of number of responses given and the ability to
capture the individual preference for listening behavior of the person. The responses
were given with a small delay of 0.22 seconds on average. We have shown that
collecting in total 8 (listener and/or parasocial) perspectives increased the coverage
of response opportunities up to 257% increase over one recorded listener.



Parasocial Sampling | 31

    Time (s) 
20 30 40 50 60 

10 

8 

6 

4 

2 

0 

R
es

p
o

n
se

s 
= MultiLis Response 

= Parasocial Response 

Figure 3.3: Sample of the distribution of responses opportunities in the MultiLis Corpus and
parasocial responses.

To illustrate the impact of the extra parasocial perspectives on the coverage of
response opportunities in the MultiLis corpus in Figure 3.3 we will take a look at the
same 48 seconds as in the previous chapter. In gray the responses from the collected
parasocial perspectives are added to the responses from the MultiLis corpus. The
participants provided a parasocial response to almost all the response opportunities
found in the previous study with the exception of the response opportunity just before
50 seconds. Interestingly this response opportunity was responded to by each listener
in the MultiLis corpus. Furthermore there are four new response opportunities of
which one was responded to by five participants. This demonstrates both the validity
of the parasocial collection method, the parasocial responses correlate with the lis-
tener responses from the corpus, as well as the increased coverage we have gained by
collecting these parasocial responses.

3.2 Individual Perceptual Evaluation

So far we have collected data to get an as complete as possible picture of the response
opportunities in an interaction by combining multiple perspectives on what appropri-
ate timing for listener responses are. In the eight interactions from the previous study
we have found 581 response opportunities. These response opportunities cover 435
seconds of the 2054 seconds these interactions last in total. So, in these interactions
21% of the time there is a response opportunity according to the perspectives we have
collected. So does this automatically mean that the remaining 79% of the time it is
an inappropriate time to give a listener response? Is a listener response generated at
such a time perceived as wrong? Does a listener response given at such a time disrupt
the conversation?

To answer these questions we use the Individual Perceptual Evaluation method. In
this method we generate virtual listening behavior in reaction to a recorded speaker
and let participants judge each generated listener response on appropriateness. Dur-
ing watching the interaction between recorded speaker and generated listener the
participants are instructed to press the space bar when they judge the generated re-
sponse to be inappropriate. We specifically instructed the participants to make a judg-
ment based on timing (see for more details on the procedure Section 3.2.1). We thus
collected a parasocial perspective of the inappropriate timing of listener responses.
However, due to the setup the perspective is discrete and not continuous. Only the
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moments where a listener response was generated are judged and no judgment is
available for the moments in-between.

The listener responses of the embodied conversational agent in these interactions
were mostly generated at known response opportunities and sometimes generated
at moments where there was no response opportunity according to the consensus
perspective. This way the listening behavior of the embodied conversational agent
still appears natural and the participant is only presented a potentially wrong listener
response sometimes. More details on the stimuli will be presented in Section 3.2.2.

We expect the participants to judge most listener responses generated at moments
where there was no response opportunity according to the consensus perspective as
inappropriate. Furthermore, we expect most listener responses generated at response
opportunities to be judged as appropriate, but not necessarily all moments. The re-
sults for this analysis will be presented in Section 3.2.3.

3.2.1 Procedure

We invited eight subjects to participate in the study. After a short introduction on
what listening behavior is and what the function of the behavior is, they watched
the eight interactions between a recorded speaker and a generated virtual listener.
They were instructed to pay attention to the timing of the listener responses and
judge each listener response on whether or not they thought the listener response
was appropriately timed. When a listener response was inappropriate according to
their judgment they were instructed to press the space bar on a keyboard (a yuck
response). The participant had the option to replay the video, which would result in a
loss of all collected judgments for that video so far.

3.2.2 Stimuli

We presented subjects with clips of a speaker from the MultiLis corpus in interaction
with a virtual listener, animated using the BML realizer Elckerlyc [142]. We used
the same eight interactions as in the previous study. As listener responses the virtual
listener performs only head nods and every time the same head nod. The timing of
the head nods is based on the consensus perspective from the previous studies.

Two-thirds of the head nods (182) were generated at known response opportu-
nities and one-third of the head nods (90) were generated between these known
opportunities. The 182 head nods generated at known response opportunities (or
at-head-nods) were placed at response opportunities with at least four response from
the multiple perspectives. The 90 head nods generated between known response op-
portunities (or between-head-nods) were placed in the 90 biggest gaps between the
at-head-nods. Within these biggest gaps they were placed in the biggest gap between
all response opportunities in the consensus perspective. This includes all response op-
portunities in the consensus perspectives, including the response opportunities with
less than four responses.
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Figure 3.4: The number of yuck responses in reaction to the head nods generated at different
times. The head nods generated at response opportunities were perceived as more appropriately
timed than head nods generated between response opportunities.

3.2.3 Results

We analyzed the number of yuck responses, judgements that a generated listener
response is inappropriately timed, in reaction to the two different types of generated
head nods, the at-head-nods and between-head-nods. On average each participant
judged 53 out of 272 head nods as inappropriate, for a total of 424 yuck responses.
As expected the participants judged the between-head-nods as less appropriate than at-
head-nods (see Figure 3.4). Forty two yuck responses were in reaction to at-head-nods
and 382 were in reaction to between-head-nods. The 42 yuck response in reaction to
at-head-nods were in reaction to 29 individual at-head-nods. So, 16% of the at-head-
nods received a yuck response from at least one participant. Four of these at-head-nods
were yucked three times, five were yucked twice and the other 22 were yucked once.

For each of the generated between-head-nods we counted the number of yuck re-
sponses. Figure 3.5 shows the histograms of the 382 yuck responses in reaction
to these 90 between-head-nods. Most of the between-head-nods (56 out of 90) were
yucked by at least half of the participants. There were three between-head-nods which
were yucked by each participant. There were eight between-head-nods which were
found appropriate by each participant (9%), even though the combination of multi-
ple perspectives in the previous studies had not detected a response opportunity at
that time.

3.3 Conclusion

In this section we have presented the individual perceptual evaluation method to col-
lect perspectives on inappropriate timing of listener responses. Participants evaluated
in an interaction between a recorded speaker and a generated listener head nods gen-
erated at known response opportunities and between response opportunities on their
timing. We have shown that 16% of the head nods generated at known response
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Figure 3.5: Histogram of the number of yuck responses to each between-head-nod.
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Figure 3.6: Sample of the distribution of responses in the MultiLis corpus, parasocial responses
and the yuck responses.

opportunities were still judged as inappropriately timed, while 9% of the head nods
generated between response opportunities were judged as appropriately timed.

How the collected perspectives on inappropriate timing has affected the segment
of 48 seconds we looked at before, is presented in Figure 3.6. In this figure we
have added the yuck responses below the previous responses as negative responses,
represented as black bars. Note that only a head nod was generated and evaluated
at response opportunities with at least four MultiLis or parasocial responses. The
moments just before 30 seconds and just before 60 seconds were the only generated
head nods between response opportunities in this segment. So, in this segment there
were no head nods generated between response opportunities that nobody judged as
inappropriate. There was a moment that was found to be a response opportunity by
the parasocial perspectives, but was judged as inappropriate in this evaluation. We
will take a closer look at this segment at a later stage when we analyze what goes on
in the interaction at these moments.



Part II

Analysis of Listening Behavior





4
Listener Equality

As mentioned before communication is a collaborative process. Both speaker and
listener coordinate their actions and behavior to transfer information to each other.
While the speaker shares information, the listener assesses this information and sig-
nals whether the information sent by the speaker has been received, understood
and/evaluated. This way a common ground of knowledge that both participants share
is established.

Research into the role of the listener in this process has a long tradition. In an
experiment where subjects were required to reproduce various geometric figures on
the basis of descriptions from the experimenter, Leavitt and Mueller [97] showed that
increasing feedback from the listener resulted in increasing accuracy of the reproduc-
tion. Thus, through the response from the listener the speaker is able to tailor the
details unclear to the listener and provide more accurate descriptions. In a repeated
version of a similar experiment, Krauss and Weinheimer [92] found that the speaker
used more words to describe the graphic designs in successive trials, when the listener
gave no feedback to the listener in between trials. Krauss et al. [91] showed that de-
laying feedback in the same experiment also resulted in the speaker using more words
to describe the graphic designs. An explanation for these results lies in the fact that
the speaker receives no or delayed feedback from the listener, so the speaker begins
to doubt his own explanation and gives additional details or rephrases.

Kraut et al. [93] conducted a study where two listeners were listening to the same
summarization of a movie by a speaker. One of the listeners could provide feedback
to the speaker, while for the other listener the audio channel back to the speaker
was disconnected without him knowing. They demonstrated that the listener that
could provide feedback had a better understanding of the summarized movie than
the disconnected listener. Bavelas et al. [7] let subjects tell a close-call story to a
listener who either was distracted from the narrative content while listening or not.
When the listener was distracted fewer responses were given and the speakers told
their stories significantly less well.

Gratch et al. [61, 62] reproduced similar results in human-agent interactions.
They researched the influence of a responsive virtual listener as opposed to an unre-
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Seen by speaker?

Noticed illusion? Correct No Idea Wrong

Yes 14 6 3 5

No 17 5 1 11

All 31 11 4 16

Table 4.1: The table shows the reported answers to questions in the post-questionnaire regarding
the manipulation. 14 out of 31 participants reported that they noticed that they were not always
seen. In total 11 out of 31 participants could correctly identify the interaction in which they were
seen by the speaker. This is hardly above chance (= 33%)

sponsive virtual listener. Human speakers interacting with a responsive virtual listener
used fewer words, had fewer pause fillers and fewer disfluencies. The speakers also
felt a greater sense of rapport with the responsive virtual listener.

All these experiments show the role of the listener as vital to the success of the
interaction. Feedback from the listener results in more effective communication show-
ing in the number of words needed to transfer information and level of understanding
of the listener giving the feedback.

The setup of our MultiLis experiment was very similar to the discussed experiment
of Kraut et al. [93], but now in a multimodal setting. The listeners could not only
hear the speaker, but also see them. The speaker, however, could only see one of the
listeners. So, there was two-way communication between the speaker and one of the
listeners, but only communication from the speaker to the two other listeners.

In the previous chapter we combined the three listener perspectives as if they were
equal. However, given the findings reported in the discussed literature this may not
be valid. The fact that the speaker could not acknowledge the listener responses of
two listeners or shape the presentation to their needs, may have had an impact on
the behavior or task performance of the listener. In this chapter we will analyze what
effect the closing of the interaction loop for the two concealed listeners had.

We will analyze whether they noticed the closing of the interaction loop (Sec-
tion 4.1), whether the closing of the interaction loop affected their task performance
(Section 4.2) and/or their behavior (Section 4.3). We will summarize our findings in
Section 4.4.

4.1 Self Report

We start by analyzing the perception of the listeners of the interactions. Did the listen-
ers notice that the speaker could not see them in two out of three listener interactions?
Did they report a higher rapport between them and the speaker when they could be
seen?

We told our participants that they would have four one-on-one interactions, while
in fact they were having four one-on-three interactions. Out of those four interactions
they were once speaker, once the displayed listener and twice the concealed listener.
During the post-questionnaire after the experiment we explained the setup to the par-
ticipants and asked them if they had noticed this illusion. Table 4.1 shows the results
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of this manipulation check. Out of 31 participants 14 reported that they had noticed
that they were not always seen (1 participant failed to fill out the post-questionnaire).
Out of those 14 only six could correctly identify in which conversation they were seen
by the speaker, five guessed a wrong interaction and three reported to have no idea.
So, even though they noticed, only about half of them were able to identify the cor-
rect interaction. Of the 17 participants that did not notice, five participants guessed
the correct interaction in which they were the displayed listener, 11 made the wrong
guess and one reported to have no idea. So, in total 11 out of 31 participants correctly
identified this conversation. This is hardly above chance (= 33%).

After each interaction the listeners filled out a questionnaire measuring the rap-
port between the listener and the speaker. The measure consisted of 10 5-point Likert
scale questions and was an adapted version of the rapport measure used by Gratch
et al. [61] with additional questions from the Inventory of Conversation Satisfac-
tion scale from White [157]. Some sample questions are “I was able to motivate the
speaker to tell his story well” and “The speaker paid attention to me”.

The displayed listeners reported a significantly higher rapport rating for the in-
teractions than the concealed listeners (3.39 vs 3.05 respectively, p = 0.014). This
is in line with what one would expect, as the speaker did not respond to concealed
listeners.

4.2 Task Performance

During the four interactions the listeners needed to remember as many details as
possible from the summarizations or recitations the speaker gave in the interaction.
Kraut et al. [93] found that listeners that could give feedback to the speaker remem-
bered more details about a summarized movie than a listener who heard the same
summarization, but could not give feedback. In this section we will analyze whether
we have reproduced these results in our experiment.

In this experiment listeners either needed to be able to answer 16 multiple choice
questions or to reproduce a recipe as accurately as possible. We measured the task
performance on these tasks and ranked the three listeners among themselves. More
details on this can be found in Section 2.1.3.

To see whether the results in our experiment are in line with these results, we
analyzed the rankings of the listeners. We used ANOVA to test for significance of
results. The results are presented in Figure 4.1. The mean ranking for displayed
listeners is in gray and for concealed listeners in red. Results are presented for all
tasks combined, for the video task only and for the recipe task only.

The mean ranking is better for displayed listeners (1.66) than for concealed lis-
teners (1.98), but not quite significant, F (1, 94) = 3.59, p = 0.06. However, if we take
a look at the two different tasks individually we see that for the video task there is a
marginally significant difference between the mean ranking of the displayed listeners
(1.50) and the concealed listeners (1.97), F (1, 46) = 4.00, p = 0.05. For the recipe
task the mean ranking of the displayed listeners (1.81) is a little better than the con-
cealed listeners (2.00), but the difference is not significant, F (1, 46) = 0.53, p = 0.47.

Overall, we can say that our data corroborates the findings of Kraut et al. [93]
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Figure 4.1: The average ranking in terms of task performance of displayed (gray) and concealed
(red) listeners for all tasks (left), video summarization task (middle) and recipe task (right). Only
the difference for the video task is statistically significant (∗ : p < 0.05).

even though they are not as convincing as the results in their paper. However, their
setup of the task and measurements were more sophisticated than ours. The speaker
had to summarize a whole movie instead of a seven minute short. Furthermore, in
their experiment some of the listeners were shown some scenes from the movie and
a very similar movie to prime them with confusing information.

4.3 Behavior

So far we have seen that some people noticed that they were not seen by the speaker,
but had a hard time identifying the interaction in which they were seen by the speaker.
The displayed listeners also reported a better rapport with the speaker. Furthermore,
we have seen that the displayed listeners had a slightly better performance in the task.

But has the setup of the experiment also changed the behavior of the concealed
listeners opposed to the displayed listeners? To answer this we will analyze the behav-
ior of the listeners. We will analyze the behavior based on the annotations made on
the MultiLis corpus in Section 4.3.1. We also did a perception study to check whether
observers could identify the displayed listener among the three. This study will be
presented in Section 4.3.2.

4.3.1 Behavior Analysis

In this section we will analyze the behavior of the displayed listeners compared to the
behavior of concealed listeners. Specifically we will look at the number of responses
given. For these analyses we looked at the 2796 responses used earlier.

Looking at the number of responses per minute, the displayed listeners gave 7.7
responses per minute and the concealed listeners gave 6.8 responses per minute.
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Figure 4.2: Graph displaying the distribution of listener responses for both displayed and con-
cealed listeners. It illustrates that although the displayed listeners (gray) usually give more re-
sponses than concealed listeners (red), but the difference does not increase over time, if con-
cealed listeners start realizing they are not being seen by the speaker.

This is on average 12% fewer responses from the concealed listeners compared to
displayed listeners. However, this difference is not statistically significant, due to the
large variance between participants (p = 0.33).

If the concealed listeners were to (consciously or unconsciously) notice that they
were not seen by the speaker, they would have done this as the interaction progressed.
At the beginning they would not know that they were concealed; they may only have
noticed that the speaker did not react to their response later on and have given fewer
responses as a result of that. If this was true, we expected the difference in response
rate between displayed listeners and concealed listeners to increase over time.

To test whether this was the case or not, we have plotted the number of responses
over time for the displayed listeners (continuous) and the concealed listeners (dotted)
in Figure 4.2. We only used the 15 interactions which lasted longer than 4 minutes.
We divided the first 4 minutes into 20 windows and counted how many responses the
listeners gave within that time frame. It shows that the number of responses from the
concealed listeners is usually smaller than from the displayed listeners, but we do not
see that the gap between the two lines increases over time.

4.3.2 Perception Study

So, the objective data has not given us significant results which discriminate the be-
havior of the displayed listener from the concealed listeners. There are indications
that concealed listeners give fewer responses, but these results are not significant due
to the large variance between listeners. Possibly the changes in behavior are more
subtle than one can detect by analyzing objective data. Humans are very capable of
noticing subtle changes in behavior. It may only be one precisely timed head nod
which discriminates the displayed listener from concealed listeners. This one head
nod will get lost in the numbers of an objective analysis, but humans are highly sus-
ceptible to such nonverbal cues. Therefore, we performed a perceptive study where
we asked observers to look at the interaction between the speaker and the three lis-
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teners, with the task to point out the displayed listener.
We invited 16 participants, recruited at the faculty, to participate in the study.

The corpus was split into 48 segments ranging from 1:45 to 3:40 minutes. Each
participant was shown, through a webpage, 6 segments of the corpus. In the segments
the speaker was presented in the top left corner. The three listeners were positioned
in the other three corners of the screen. We varied the corner in which the displayed
listener was placed. They could pause and repeat the whole or part of the segment.
For each of the segments they were asked to identify the displayed listener among the
three listeners. Every segment was presented to two participants.

In total the participants answered correctly in 43 of 96 segments (45%), which is
significantly better than chance (P (X >= 43) = 0.01, with an a priori chance of 33%).
The numher of correct answers varied from 0 to 6. There were 8 segments where both
participants identified the correct listener, 27 where one participant identified the
correct listener and 13 where none of the participants identified the correct listener.
Informal interviews with the four participants who identified the correct displayed
listener at least 4 out of 6 times revealed that their strategy was to look for reactions
of the speaker to one of the listeners. The listener to which the speaker reacted was
chosen to be the displayed listener. They especially paid attention to the timing of
smiles. They looked for moments where a speaker reacted to a smile by one of the
listeners (by smiling or any other type of reaction). The listener who the speaker
reacted to must have been the displayed listener.

4.4 Conclusion

In this chapter we have analyzed what impact the closing of the interaction loop has
had on the two concealed listeners opposed to the displayed listeners. With regards to
their own perception about 30% of the participants claimed to have noticed the clos-
ing of the interaction loop after being informed, but only half of them could identify
the correct interaction in which they were a displayed listener. The participants re-
ported a higher rapport with the speaker when they were the displayed listener than
when they were the concealed listener. Furthermore, we have seen that the displayed
listeners had a slightly better performance in the task.

However, the change in behavior is minimal. Even if the listeners noticed that
they were in the concealed listener condition, they still behaved naturally enough that
observers had a hard time identifying who was the displayed listener among the three
listeners. Only some observers succeeded in identifying the displayed listeners. The
observers did this by paying close attention to the interaction of behaviors between
speakers and listeners. In terms of number of listener responses given the difference
was not significant. However, there was a trend that concealed listeners gave fewer
responses.

Overall, we feel that we have succeeded in capturing natural behavior from the
concealed listeners which we can regard as equal to the behavior of displayed listeners
for the forthcoming conversational analyses.



5
Conversational Analysis

In the previous chapters the similarity between listeners was analyzed. This was done
by first creating a consensus perspective of the collected multiple perspectives. This
was followed by an analysis of various other aspects such as the rapport felt, task per-
formance and behavior. Even though similarities were found, no two listeners were
found to be identical. From the perspective of response opportunities only a minority
of the response opportunities was responded to by all of the listeners. The number of
responses each listener gave during the three interactions they were involved in varied
between 2.5 and 15.9 responses per minute (mean was 7.5 responses per minute).

Each listener was involved in three interactions. When the number of responses
the listener provided was solely caused by the choices and preferences of the listener,
independently of the speaker, on average the listener provided the same number of
responses in each of these three interactions. The height of the bars in the right
graph in Figure 5.1 shows that this was not the case. The interactions with the least
number of responses from each listener, the interactions with the most responses and
the ones in-between were grouped and the mean responses per minute for each group
were calculated. The right graph in Figure 5.1 shows that for the group the number of
interactions with the least responses is 3.9 responses per minute, for the middle group
6.9 responses and the group with the most response, 10.5 responses per minute. So,
there was a significant variation within the behavior of the listener, caused by the
speaker (p < 0.001 on a paired-sample t-test between all groups).

The speaker is not the sole factor here either. The height of the bars in the left
graph in Figure 5.1 shows that there is a variation between the three listeners within
a session. Calculating the mean responses per minute for each group of listeners from
each session with the least responses per minute (= 4.8), most responses (= 9.4) and
the group in-between (= 7.0), we get the left graph in Figure 5.1. The variation is not
as big, but still significant (p < 0.001 on a paired-sample t-test between all groups).
This suggests that the combination of speaker and listener determined the number of
responses the listener gave, where the speaker had a little more influence on this.

So, this leaves us with the question what did the speaker do to influence the
number of responses the listener gives. This is what we will analyze in this chapter
through means of conversational analysis. The analysis of the recorded interactions in
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Figure 5.1: The left figure shows the average number of responses per minute grouping together
the three listener within a session into a group of listeners with the least responses, the listen-
ers with the most responses and the listeners in-between. This illustrates that within the three
listeners the number of responses varies quite a lot. The right figure shows the average number
of responses per minute when looking at the three sessions of each individual listener and when
grouping them into the sessions with the least responses, the listeners with the most responses
and the listener in-between. This illustrates that the response behavior of each listener is highly
influenced by the actions of the speaker.

the MultiLis corpus aims to find patterns in the behavior of the speaker in the seconds
before the listener gives a response. This will be done in order to find out what cues
a speaker gives to make certain response opportunities more compelling to respond
to than others. Furthermore, an analysis will be made whether listeners agree on the
form of the listener response when they reacted to the same response opportunity.

The chapter will start with an analysis of what the speaker says in the preceed-
ing utterance in Section 5.1. Then the relation between response opportunities and
pauses will be looked at in Section 5.2 and the energy of the speech signal in Sec-
tion 5.3. In Section 5.4 at the preceeding pitch contours will be subject to investi-
gation. This is followed by an analysis of the relation with eye gaze in Section 5.5.
Finally, the form of the head gestures the listeners showed and any differences or
agreements in that aspect will be analyzed in Section 5.6.

5.1 Content

The previous studies collected multiple perspectives on response opportunities, per-
spectives on both appropriate (Chapter 2 and Section 3.1) and inappropriate (Sec-
tion 3.2) moments for listener responses. In the combined consensus perspective
three type of moments can be identified. These types are high agreement (positive or
negative), controversial and neutral moments. The high agreement moments have ei-
ther positive or negative responses, the controversial moments have positive and nega-
tive responses and neutral moments have neither positive nor negative responses. The
analyis of these type of moments will be done by presenting several transcriptions of



Conversational Analysis | 45

    Time (s) 

20 30 40 50 60 

10 

8 

6 

4 

2 

0 

2 

4 

6 

8 

R
es

p
o

n
se

s 
R

es
p

o
n

se
s 

= MultiLis Response 

= Parasocial Response 

= Yuck Response 

1 2 3 4 5 6 7 8 9 10 

Figure 5.2: Sample of the distribution of responses in the MultiLis corpus, parasocial responses
and the yuck responses.

these moments and discussing the timing of the responses in relation to the context.
First are the response opportunities with high agreement; moments where most

perspectives agree these are appropriate or inappropriate moments to provide a lis-
tener response. For this we analyze the segment in Figure 5.2 and see what actually
happens in the interaction. This segment is taken from an interaction where the
speaker recites a recipe for risotto with mushrooms. In this segment the speaker is
halfway through the ingredient list. The transcript is presented in Table 5.1. The
numbers in the rightmost column correspond to the response opportunities with the
same number in Figure 5.2. The high agreement moments in this segment are 1, 2, 5,
8 and 10 (positive), and 3 and 9 (negative).

The response opportunities 1 and 10 are not in reaction to a summarizing state-
ment. Both statements summarize the previous ingredients with a mnemonic device
to help them memorize the ingredients by summarizing the numbers mentioned (1)
or by adding up the weights to a round figure (10). Beside the verbal cues, the speaker
also makes iconic gestures to accompany the summarizing statements.

The other three high agreement response opportunities in this segment (2, 5 and 8)
are all in reaction to a refining statement in which a previously mentioned ingredient
is more precisely described: the oil is specified as being olive oil (2), the amount of
thyme is specified (5) and the precise weight of the rice (8). The other ingredients
(like the garlic and onion) are also acknowledged with a listener response by some,
but agreement between individuals is much lower in these cases (see the unnumbered
response opportunities in Figure 3.6).

The moments with high agreement in negative yuck responses (3 and 9) are both
mid-sentence. They are not placed near or after the end of a grammatical clause,
which was identified as a cue by Dittman and Llewellyn [40], but instead are placed
during or directly after the theme of the sentence. So, no new information has been
mentioned by the speaker yet (rheme) and the listener response is premature. Fur-
thermore, moments with high agreement in negative yuck responses are moments af-
ter long silences of at least 2 seconds, moments in between the article and the noun,
and moments shortly (within 1.5 seconds) following another listener response.

The moments 6 and 7 are an interesting case that illustrates the influence the delay
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Table 5.1: Transcript of the segment displayed in Figure 3.6. The numbers in the rightmost column
correspond to the response opportunities with the same number in Figure 3.6.

19.1 - 20.8 twee eetlepels two tablespoons
20.9 - 22.3 olie. Dus één liter oil. So one liter
22.5 - 23.3 twee en twee two and two

24.1 1
24.3 - 25.2 olijfolie olive oil
25.3 - 25.8 natuurlijk of course

25.9 2
27.9 - 28.7 uhm uhm
29.6 - 30.1 je hebt you’ve got 29.9 3
30.3 - 32.9 verder voor de seasoning furthermore for the seasoning
33.4 - 34.5 één teentje knoflook one clove of garlic
35.6 - 36.4 één ui one onion
37.7 - 40.1 uh twee stengels bleekselderij uh two sticks of celery

40.1 4
42.0 - 42.8 uh tijm uh thyme
42.9 - 43.9 één handjevol tijm one handful of thyme

44.4 5
46.4 - 49.0 en natuurlijk uh heel veel paddestoelen and of course a lot of mushrooms 49.0 6
49.1 - 50.1 500 gram 500 grams
51.0 - 51.6 en and 51.0 7
51.9 - 52.8 uhm uhm
53.2 - 54.4 natuurlijk de rijst of course the rice
55.2 - 57.0 400 gram rijst 400 grams rice

57.3 8
57.8 - 58.0 dus je hebt so you’ve got
58.4 - 61.9 uh 500 gram paddestoelen uh 500 grams mushrooms 58.6 9

400 gram rijst 400 grams rice
62.4 - 65.3 en 100 gram parmezaanse kaas and 100 grams parmesan cheese

dus in totaal so in total
65.4 - 65.7 mooi nicely
66.0 - 66.5 één kilo one kilo 66.5 10

Table 5.2: Transcript of the most controversial response opportunity in the collected data, with 6
positive responses (3 MultiLis and 3 parasocial) and 3 negative yuck responses.

29.0 - 31.1 het moment dat hij boven komt, uhm the moment he arrives at the top, uhm
31.6 - 32.1 oh wacht oh wait
32.3 - 32.9 helemaal verkeerd that’s wrong

33.3 11

Table 5.3: Transcript of a neutral response opportunity where no positive and no negative re-
sponses were recorded.

30.5 - 34.1 uh, volgende list moet ie verzinnen uh, he has to come up with a new trick
hij gaat vanaf he goes from

34.6 - 35.4 uh uh
35.5 - 36.1 een tegenoverliggend gebouw an opposing building 36.1 12
36.1 - 40.8 via allemaal lijnen across all those cables

die daar gespannen zijn that are spanned there
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of parasocial responses can have. The listeners in the corpus respond to “mushrooms”,
while the parasocial responses are in reaction to the refining statement “500 grams”.
We have seen in Section 3.1.3 that the parasocial responses are on average 220 ms
slower. Since the pause between the two statements is very short (a little over 100
ms), this delay would cause the person to place the parasocial response during the
“500 grams” statement. Instead they wait until the refining statement is finished.
However, the faster responses from the listeners do not interfere with this statement
and are made before the refining statement is started. Response opportunity 7 is a
controversial moment since it is also yucked by two individuals. This is probably due
to the timing, which is synchronous to the start of the word “and”.

Besides response opportunities 4 and 7 there are other controversial response op-
portunities in the corpus. The most controversial moment has 6 positive responses
(3 MultiLis and 3 parasocial) and 3 negative yuck responses. The transcript of this
moment is presented in Table 5.2. In this segment the speaker corrects himself. An
acknowledgment from the listener through a listener response is valid according to
six perspectives. The recorded listeners all responded to this moment, however two
of them did not respond with a head nod, but with a polite smile (the speaker also
smiles at this moment). However, the generated virtual agent in study 3 only per-
forms a head nod. So it is likely that the response opportunity is not yucked because
of the timing, but because of the type of listener response displayed.

Another reason for controversy in the corpus is that two response opportunities
in quick succession (within 2 seconds) are individually regarded as good response
opportunities (at least 4 positive responses to each opportunity in the first two stud-
ies), but when generating a listener response at both moments in the third study, the
second listener response gets yucked by some individuals.

The last category of responses are the neutral responses. These are responses
which are generated as between-head-nods in Study 3 at moments they received no
positive responses in the first two studies. However, in the third study they were
not seen as inappropriate responses and thus not yucked. In Table 5.3 one of these
moments is transcribed. The head nod is placed mid-sentence, not during a pause.
The complete statement is not yet finished. However, it is placed directly after a
vital piece of information within this statement (“an opposing building”), which is
emphasized by the speaker and memorized after a short hesitation. A confirmation
of this piece of information is appropriate according to Study 3 even though no other
perspectives previously provided a response there. There are 7 neutral moments in
our data (see Figure 3.5). In 5 of these moments the listener response is placed mid-
sentence after a vital piece of information as in the previous example. In the other
two cases the listener response is placed between sentences.

5.2 Speech Activity and Pause

As was shown in the previous section, response opportunities are usually placed in
response to content that needs to be confirmed and/or assessed. This is in line with
the research of Dittman and Llewellyn [40]. They have identified that listener re-
sponses are placed near or after the end of a grammatical clause. It is this clause the
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listener responses refer to as being heard, understood, agreed upon and/or otherwise
assessed. However, an exact time frame within which these listener responses need
to be placed is not stated. The question remains whether the listener waits until the
speaker has finished the grammatical clause, and if so for how long. Sacks et al. [129]
suggested that this is not always the case. They said that in interaction interlocutors
usually predict the ending of a sentence or turn to plan their response and based on
that prediction often respond before the speaker has completed their contribution.

Seeing the number of listener response prediction models that classify interpausal
units to be either followed by a listener response or not [114, 28, 136, 88, 133], it is
often assumed that listener responses are only placed during pauses. However, there
are several findings that contradict this assumption.

In the Dutch IFADV corpus Truong et al. [141] observe that only 37% and 16% of
the visual and vocal listener responses respectively occur during a pause. In another
corpus of a spontaneous dialogue between two Swedish female speakers 40 out of
75 listener responses occurred completely or partially during a pause [101]. These
results suggest that at most half the listener responses are placed during a pause.

The fact that listener responses are placed near the completion of a grammatical
clause was supported by Truong et al. [141], as they note that the probability of
listener response increases as speech progresses. They observe a peak in speech prob-
ability around 1.25 seconds before the onset of a listener responses, so this seems
to be the maximum delay between the grammatical clause and the accompanying
listener response.

In the following section analysis will be presented of the relation between speech
activity/pause and listener responses in our Dutch MultiLis corpus.

5.2.1 Procedure

The analysis of the relation between the occurrence of a listener response and pause
used the 1733 response opportunities identified by combining the perspectives from
the three recorded listeners. The surrounding seconds of the onsets of these re-
sponse opportunities were of interest. The number of times the speaker was silent
was counted for each frame (sampling rate 100 Hz) from 5 seconds before until 5
seconds after the onset of the response opportunity. This analysis was performed four
times; once for all response opportunities and once for response opportunities with
only one response (RO1), with two responses (RO2) and three responses (RO3).

Speech labels were automatically extracted using the Dutch ASR software SHoUT [81].
When the gap between two segments was less than 100ms, the two speech segments
were combined. Based on these labels the speakers are silent 32% of the time. This
number is used as a baseline. If there is a relation between the presence or absence
of speech from the speaker and the onset of a response opportunity either a higher or
a lower percentage of pause than the baseline of 32% in the region before and after
the onset of the response opportunities can be expected.
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Figure 5.3: Correlogram illustrating the percentage of speaker pause around each of the response
opportunities. The response opportunities are divided into three groups, one with responses from
one listener (RO1), one with responses from two listeners (RO2) and one with responses from
three listeners (RO3). The baseline is at 32%, the amount of time the speaker is silent in the
MultiLis corpus.

5.2.2 Results

The resulting correlogram of the analysis of the relation between pause and listener
responses is presented in Figure 5.3. On the horizontal axis time relative to the onset
of the response opportuntity is respresented in seconds, starting from 5 seconds before
up until 5 seconds after. On the vertical axis the percentage of times the speaker was
silent at that time relative to the onset of the response opportunity. The peaks and
valleys in the graph show the moments in time relative to the onset of the response
opportunity where pause is more or less probable.

At time 0, the onset of the response opportunity, the difference in pause rates
between the three different groups of response opportunities are non-existent, with
pause rates of 42% for all three groups, which is significantly above our baseline,
χ2(1, N = 3470) = 39.0, p < 0.01. However, there are clear differences between the
three groups in the seconds before and after the onset of the response opportunities.
For RO2 and RO3 the second before the onset usually contains speech, with pause
rates at 0.7 seconds before the onset of 12%. The pause rate for RO1 at that time is
25%. Starting from 0.3 seconds before the onset these rates start to increase massively
for RO2 and RO3. Eventually RO2 peaks 0.3 seconds after the onset at a pause rate
of 55%, while RO3 peaks a little later at 0.5 seconds after the onset at 81%. RO1
reaches a peak of 43% at 0.3 seconds after the onset. RO1 and RO2 stabilize around
the baseline at 1 second after the onset, while RO3 stabilizes 1.5 seconds after the
onset.



50 | Chapter 5

5.3 Energy

The speech signal holds more information than the presence or absence of speech.
One of the features of the speech signal is the energy. This is a feature which correlates
with the loudness of the speech.

The relation between this energy feature and the timing of listener responses has
been established for several languages. A positive correlation was found in Japanese
for a high peak and a late decrease in energy in the speech preceeding a listener re-
sponse and a negative correlation was found for a low peak in energy and a flat energy
contour [89]. For English a correlation was observed with high energy [63], but also
low energy [99]. For Spanish the low energy cue was also observed [99, 152], while
for Chinese a falling energy contour has been related to listener responses [152].

In this section we will analyze what the relation between this feature and listener
responses is in our Dutch MultiLis corpus. Since we have already observed that lis-
tener responses are placed near the end of utterances, we expect the energy to be
high a few hundred milliseconds before the listener response and decrease as we get
closer to the onset of the listener response.

5.3.1 Procedure

The analysis of the energy values of the speech preceeding listener responses in our
Dutch MultiLis corpus will be performed by plotting bitmap clusters [45] following
the visualization improvements suggested by Ward and McCartney [151, 152].

The raw energy values were extracted using the openEAR toolkit [46] at a sam-
pling rate of 100 Hz. To normalize for each speaker, all energy values were converted
to percentile based values with the heighest valid energy value per speaker being
100% and the lowest value 1%. This conversion is done such that each percentile
energy value occurs approximately 1% of the time per speaker.

Using these energy values four bitmap clusters were created, one for all 1733 re-
sponse opportunities, and one for RO1, RO2 and RO3. The region of interest of these
bitmap clusters is the two seconds preceeding the onset of the response opportunity.

In this region of interest the number of times an energy value of a certain per-
centile at a certain time frame occurs is counted for each response opportunity. So,
each point in the bitmap represents the number of times that percentile energy value
occurred at that time. The coloring of the bitmap cluster is normalized so that the
highest count was black and the lowest white. As a final step the bitmap cluster was
smoothed by averaging the values with a 5 by 5 window.

5.3.2 Results

In Figure 5.4 the bitmap cluster of the energy values in the two seconds before the
onset of all response opportunities is presented. On the horizontal axis time relative
to the onset of the response opportunity is represented in seconds, with 2 seconds
before the onset on the left end and the time of the onset of the response opportunity
on the right end. On the vertical axis the percentile energy is represented with 100%
at the top (high energy) and 1% at the bottom (low energy).
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Figure 5.4: Bitmap cluster of the percentile energy values in the two seconds preceeding the
onset of all 1733 response opportunities.

Looking at the darker areas the bitmap cluster highlights at what time, what per-
centile energy values occur most frequently. The lighter areas highlight percentile
energy values that are usually not seen at that time before a response opportunity.

The bitmap cluster shows that up until 0.5 seconds before the response opportu-
nity the energy is high, above 50%. From there on, the intensity seems to decline,
with the switch around 0.25 seconds before the response opportunity, where the ma-
jority of the energy becomes low, below 50%. This correlates with the fast increase in
pause percentage we have seen in Figure 5.3. From the bitmap cluster it is hard to see
whether the intensity level is rising or falling right before the speaker falls silent. This
bitmap cluster is similar to the bitmap clusters for Iraqi Arabic, Spanish, American
English and to a lesser extent, Chinese [151].

In Figures 5.5 to 5.7 the bitmap clusters for the three types of response opportunity
are presented. These figures show that the time of the drop in energy is closer to the
onset of the response opportunity as the number of listeners that responded increases.
For RO1 this drop starts from 0.5 seconds before the onset. For RO2 this drop occurs
0.25 seconds before. Finally, for RO3 only 0.1 seconds before, if this drop occurs at
all. Due to the lower sample size the bitmap cluster for RO3 is less clear than the
other two.

The interaction between pause and listener responses we observed in Figures 5.3
and 5.4 is that listener responses usually (closely) follow speech and are situated right
before or right at the start of a pause. This interaction is stronger in the cases where
more than one listener provides a response (RO2 and RO3). It is interesting to note
that the pauses after the response seem to be more frequent and longer in the case of
RO3. As noted in Section 5.1 these response opportunities often follow summarizing
or refining statements by the speaker. These statements are targeted to improve the
understanding of the content by the listener and therefore a listener response - a
signal to communicate understanding - can be expected by the speaker. To allow this
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Figure 5.5: Bitmap cluster of the percentile energy values in the two seconds preceeding the
onset of all 1140 response opportunities with one response (RO1).
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Figure 5.6: Bitmap cluster of the percentile energy values in the two seconds preceeding the
onset of all 465 response opportunities with two response (RO2).
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Figure 5.7: Bitmap cluster of the percentile energy values in the two seconds preceeding the
onset of all 128 response opportunities with three response (RO3).
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to happen, the speaker extends his or her pause slightly. This type of coordination
between speaker and listener is studied and described in more detail in [57, 34, 7, 9].

5.4 Pitch

A prosodic feature that is often related to the timing of listener response is the pitch
or fundamental frequency of the speech. Several analyses of the relation between
the pitch cue and listener responses have been performed on manually annotated
data. Coders have manually annotated the contour of the pitch of the speech. These
contours are descriptions of the change and value of the pitch in a speech segment
and are expressed in terms of rising, falling, flat/sustained and high, low or medium
pitch.

Based on such annotations, Dittmann and Llewellyn [40] reported that in an En-
glish corpus a listener response more often follows a speech segment with a falling or
rising pitch contour as opposed to a speech segment with a sustained pitch contour. A
speech segment with a falling or rising pitch contour is followed by a response 37.1%
or 26.4% respectively, while a speech segment with a sustained slope is followed by
a response only 6.1% of the time. Gravano and Hirschberg [63] reported that the
final 200 to 300 ms of the interpausal unit preceeding a listener response has a rising
contour and is generally higher in pitch. For French, Bertrand et al. [13] observed
that the rising or sustained contours are relevant at points where listener responses
occur.

Analyses of the pitch cue have also been performed based on automatically ex-
tracted pitch contours on several languages. The pitch contour of the speech pre-
ceeding a listener response has been described as rising for Japanese [89, 114] and
Swedish [133]; rise-falling for Japanese [89, 114]; falling for Arabic [149, 150] and
Swedish [133]; high for Swedish [133] and low for English [153, 99, 151], Chi-
nese [152], Japanese [151, 152], Swedish [133], Dutch [141] and Spanish [99].

5.4.1 Procedure

The analysis of the pitch contours preceeding listener responses in the MultiLis corpus
was performed by plotting bitmap clusters [45] following the visualization improve-
ments suggested by Ward and McCartney [151, 152].

The raw pitch features were extracted using the algorithm from Drugman and
Alwan [42] at a sampling rate of 100 Hz. Our interest is only in the pitch values of
speech, so only the pitch values during the speech segments as detected by the ASR
software SHoUT [81] are considered valid.

To be able to calculate the pitch of speech a sound is required whose frequency is
clear and stable enough to distinguish from noise. This is not true for all segments
of speech. Most consonants do not have a harmonic frequency spectrum and this
makes automatic detection of pitch for these consonants near impossible. This results
in segments of speech where no pitch value can be established. To deal with this
fact, gaps in detected pitch smaller than 80 ms (8 frames) are linearly interpolated,
following [153]. Finally, all pitch values are converted to percentile based values with
the heighest valid pitch value per speaker being 100% and the lowest value 1%. This
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Figure 5.8: Bitmap cluster of the percentile pitch values in the two seconds preceeding the onset
of all 1733 response opportunities.

conversion is done such that each percentile pitch value occurs approximately 1% of
the time per speaker.

Using these pitch values, four bitmap clusters are created, one for all 1733 re-
sponse opportunities, one for the 1140 response opportunities with only one response
(RO1), one for the 465 response opportunities with two responses (RO2) and one for
the 128 response opportunities three responses (RO3). The region of interest of these
bitmap clusters is the two seconds preceeding the onset of the response opportunity.

In this region of interest for each response opportunity the number of times a
pitch value of a certain percentile occurs at a certain time frame was counted. So,
each point in the bitmap represents the number of times that percentile pitch value
occured at that time. The bitmap cluster was normalized so that the highest count
is black and the lowest white. As a final step the bitmap cluster was smoothed by
averaging the values with a 5 by 5 window.

5.4.2 Results

In Figure 5.8 the bitmap cluster of all 1733 response opportunities found the MultiLis
corpus is shown. On the horizontal axis time relative to the onset of the response
opportunity is represented in seconds, with 2 seconds before the onset on the left end
and the time of the onset of the response opportunity on the right end. On the vertical
axis the percentile pitch is represented with 100% at the top (high pitch) and 1% at
the bottom (low pitch).

Looking at the darker areas the bitmap cluster highlights at what time, which
percentile pitch values occur most frequently. The lighter areas highlight percentile
pitch values that are not usually seen at that time before a response opportunity.

In Figure 5.8 two trends can be seen. The pitch either becomes very low (below
the 10th percentile mark) in the few hundred milliseconds preceeding the response
opportunity or high (above the 60th percentile mark). So, the pitch values between
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Figure 5.9: Bitmap cluster of the percentile pitch values in the two seconds preceeding the onset
of all 1140 response opportunities with one response (RO1).
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Figure 5.10: Bitmap cluster of the percentile pitch values in the two seconds preceeding the onset
of all 465 response opportunities with two responses (RO2).
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Figure 5.11: Bitmap cluster of the percentile pitch values in the two seconds preceeding the onset
of all 128 response opportunities with three responses (RO3).
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the 10th and 60th percentile mark occur less frequently than one would expect. This
divergence seems to emerge starting around 750 ms before the onset of the response
opportunities. Any pitch values before this time do not seem to have a correlation
with the occurrence of a response opportunity.

A bitmap cluster was created for each of the three types of response opportunity
to see whether there are differences in the pitch values preceeding a response op-
portunity with a different number of listeners responding. Figure 5.9, Figure 5.10
and Figure 5.11 show these bitmap clusters of two seconds preceeding the response
opportunities with one (RO1), two (RO2) and three (RO3) responses, respectively.

The bitmap cluster for RO1 (Figure 5.9) looks very similar to the original bitmap
cluster (Figure 5.8). This is not surprising since this bitmap cluster is based on 66%
of the same response opportunities. Again the same patterns as described above can
be seen. In the bitmap cluster for RO2 (Figure 5.10) the very low pitch cue (below
10%) seems to be present more often for response opportunities with two responses
than for response opportunities with one response. A very high pitch (above 75%) in
the final 250 ms can also be observed. The bitmap cluster for RO3 (Figure 5.10) is
less outspoken because of the lower number of samples (128). However, the very low
pitch value cue can still be observed and a very high pitch in the final 100 ms before
a response opportunity with three responses.

These results confirm the earlier findings that in most languages, including Dutch [141],
a listener response is preceeded by a region of low pitch [153, 99, 151, 152, 133].
Furthermore, a region of high pitch is also observed. Although extracting a contour
from these bitmap clusters is not arbitrary, the bitmap clusters suggest that the pitch
begins rising or falling to these high and low values, respectively, around 750 ms
before the listener response.

5.5 Eye Gaze

Bavelas et al. [8] studied the relation between gaze and listener responses through
microanalysis of their corpus. In this research they identified the collaboration be-
tween the speaker and the listener, where the speaker typically seeks a response from
the listener by looking at him or her, which begins a brief period of mutual gaze.
When the listener responds within this so-called gaze window, the speaker quickly
looks away, terminating the window and continuing to hold the turn. These findings
have confirmed earlier findings by Kendon [86] and Argyle et al. [6] stating that a
speaker looks at his/her interlocutor at points in the discourse where the speaker is
looking for a response from his/her interlocutor.

This relation has been found in several corpora. Bavelas et al. [8] observe that
83% of the listener responses are given when the speaker looks at the listener. Truong
et al. [141] observe a percentage of 85% on the Dutch IFADV corpus.

For the recreation of this behavior in a virtual human more information is needed
than these studies provided. The previous studies have given general descriptions of
the behavior, but do not give us the specifics on the timing of the response once a
gaze window has been established. How long into the gaze window does the listener
typically respond? And how long does the gaze window stay open after the response



Conversational Analysis | 57

has been given?

5.5.1 Procedure

The relation between gaze and listener responses in the MultiLis corpus was analyzed.
Speaker gaze was manually annotated. Unfortunately, annotations for gaze of the
listener were not available, so the relation between the gaze window discussed by
Bavelas et al. [8] and listener responses could not be analyzed; only the relation with
speaker gaze. Since the listener usually looks often and for long periods in time at the
speaker [5, 86, 141], results can be expected to closely resemble results on mutual
gaze data.

The 1733 response opportunities identified by combining the perspectives from
the three recorded listeners were used for the analysis. In this analysis we are inter-
ested in the seconds surrounding the onset of the response opportunities. To this end
the number of times the speaker was looking at the listener were counted for each
frame at a 100 Hz sampling rate from 5 seconds before until 5 seconds after the onset
of the response opportunity. This analysis was performed for all response opportu-
nities, for response opportunities with only one response (RO1), with two responses
(RO2) and three responses (RO3).

The baseline was established by the total percentage of the speaker looking at the
listener in our corpus. If there is a relation between the presence or absence of gaze
from the speaker and the onset of a response opportunity, an either higher or lower
percentage of gaze than the baseline of 67% in the region before and after the onset
of the response opportunities can be expected.

5.5.2 Results

The resulting correlogram of the procedure discussed above is presented in Figure 5.12.

By looking at time 0 one can see that for response opportunities with one, two and
three responses the gaze rates are 81%, 90% and 95%, respectively. These differences
between RO1, RO2 and RO3 are significant, χ2(1, N = 1735) = 30.6, p < 0.01. By
looking at time -2 to 0 in the graph one can observe that the gaze rate starts to increase
about 2 seconds before the actual response opportunity. Starting from 1 second before
the response opportunity RO3 has a higher gaze rate than RO2 and RO1. The gaze
rate sharply declines during the 1 second after the response has been given for all
three categories, where RO3 continues to drop a little further.

These observations illustrate the collaboration between speaker and listener iden-
tified by Bavelas et al. [8]. Indeed, the speaker seeks a response from the listener
by looking at him or her and after this response has been given the speaker looks
away. These results suggest that this interaction takes about three seconds, where the
speaker usually looks at the listener for up to two seconds before the listener responds
and continues to look at the listener for up to one second afterwards.
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Figure 5.12: Correlogram illustrating the percentage of gaze from the speaker at the listener
around each of the response opportunities. The response opportunities are divided into three
groups, one with responses from one listener (RO1), one with responses from two listeners (RO2)
and one with responses from three listeners (RO3). The baseline is at 67%, the amount of time
the speaker looks at the listener in the MultiLis corpus.

5.6 Head Gesture

The final part of this chapter will take a look at the form of the listener response.
Whether the different listeners give a listener response of the same form when they
respond to the same response opportunity or not will be analyzed.

5.6.1 Agreement in Head Gesture

As explained in Section 2.2.2, the main head gesture types available in the MultiLis
corpus are Nod (characterized by a downward stroke), Backnod (characterized by
an upward stroke) and Double nod (two nods in quick succession with the same
amplitude). There is a Lingering variant of each of these head gesture types. These
head gestures continue for a period of time in decreasing amplitude. If the amplitude
is increased a new head gesture is annotated. The corpus also included the labels
Downstroke and Upstroke, which are single up or down movements. For the next
analyses these are considered as Nod and Backnod, respectively. All the other labels
are combined in the label Other.

The first analysis looks to see if the three listeners used the same head gesture
when they reacted at the same time. For each response opportunity with at least two
responses we noted the head gestures type the listener used in their response. This
was Nod, Backnod, Double Nod or Other. Then Krippendorff’s alpha coefficient [94]
was calculated to measure the agreement between the two or three listeners, resulting
in an alpha of 0.082. So, no significant agreement was found in the head gesture type
the listeners used.

Agreement between listeners in their use of the lingering head gestures was also
analyzed. Each head gesture was coded as either Lingering or Not Lingering. Again
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Krippendorff’s alpha coefficient was calculated to measure agreement and no agree-
ment was found (alpha = 0.017).

5.6.2 Typical vs Deviated Responses

So, the results of the annotations in the MultiLis corpus show that listeners do not all
produce a head nod starting downwards, a head nod starting upwards nor two simi-
lar nods in quick succession in response to the same response opportunity. However,
this study did not control for the individual differences in listener response produc-
tion. Looking at the listening behavior in the MultiLis corpus shows that each indi-
vidual has a typical head nod they usually produce. One individual may usually start
their head movement downward, whereas another usually starts upwards. Given this
knowledge, it is not surprising that the previous analysis showed no agreement.

However, there are times listeners deviate from their typical listener response.
This deviation could either be a bigger amplitude, a higher frequency, louder voice
and/or different form. These responses seem to bear more meaning than these typical
responses. The listeners seem more sure that the response needs to be given and show
this by giving a clearer signal to the speaker.

A distinction can thus be made between typical and deviated responses. In this
distinction the typical responses are the responses that, based on the form of the
response, a listener opts for when no meaning is attached to the response other than
being a signal of attendance and superficial understanding; the response that the
listener will give the majority of the response opportunities (at least in our data).
The deviated responses are the responses that seem to bear more meaning as they
deviated from the typical response in terms of increased amplitude, velocity and/or
frequency of the head gestures or are different in form altogether.

This distinction is closely related to a distinction in listener responses made by
Bavelas et al. [8]. They made the distinction between generic and specific lis-
tener responses (or continuers and assessments as Goodwin calls them [57]). In
this distinction generic listener responses keep the listener clearly in the role of lis-
tener/audience, whereas specific responses are co-telling acts in which the listener
becomes involved with the narrator telling the story.

Our interest in the division was the form of the listener response, not its relation
to the speaker’s actions. Since annotations were performed without the audiochannel
of the speaker, an accurate assessment of whether a response was co-telling or not
could not be achieved solely on the form basis.

Despite the different viewpoints on which the distinctions between the types of
listener responses are based, they are likely to be similar. The typical responses can
be assumed to be mostly generic listener responses and it is likely that all specific
listeners response are classified as deviated responses. When a listener wants to show
his/her involvement with the story, he/she needs to deviate from his/her usual be-
havior to signal this to the speaker. The deviated responses class also contains “firm”
generic responses as well. There are instances where a clear signal is given that what
has just been said is understood and that the story or recipe can progress. This is
usually achieved by giving a head nod with a larger amplitude, velocity and/or fre-
quency than typical for the listener. Such responses would still be considered a generic
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n Typical Response Deviated Response %
RO1 1142 858 284 24,9%
RO2 439 598 280 31,9%
RO3 119 229 128 35,9%
Total 1700 1685 692 29,1%

Table 5.4: Correlation between the number of listeners responding to a response opportunity (one
listener = RO1, two listeners = RO2, three listeners = RO3) and whether they produced a typical
or deviated response.

response by the division of Bavelas et al.
The following analysis will test whether a correlation exists between these typi-

cal and deviated responses and the number of listeners that responded to a response
opportunity. The results of the previous analyses have shown that response opportu-
nities with more than one response are often more clearly cued by the speakers. At
those moments speakers often made a more significant contribution to the discourse
and looked at the listener more often. Since there are more cues given by the speaker
at those moments, the listeners are more aware that the speaker wants a response at
this moment and may opt for a deviated response more often than a typical response
to acknowledge this fact.

Procedure

To collect annotations one annotator classified 2377 listener responses from the Mul-
tiLis corpus as either a typical response or a deviated response. What the typical
response was for each individual listener was established by watching each of the
three videos of the particular listener before actually classifying any responses. The
prevalent response was regarded to be the typical response for that particular listener.
Sometimes the listener has a small set of prevalent responses the listener alternates.
If so, all of these responses were annotated as a typical response. For this anno-
tation only responses with a head and/or vocal component were considered. Thus,
responses only consisting of smiles, raised or frowned eyebrows and/or other gestures
were not considered in this study. Annotation was performed with no sound, solely
on the video image. A second annotator classified 8 out of 32 listeners and inter-
annotator agreement between the two annotators was 81% with a Krippendorff’s
alpha of 0.56.

Results

In Table 5.4 the results of the annotations are presented. The 2377 response are di-
vided over 1700 response opportunities1. From the 2377 responses 1685 responses
were classified as typical responses and 692 as deviated responses for a deviation rate
of 29.1%. Splitting up the responses of the three different type of response oppor-
tunities shows that deviation rate increases from 24,9% for RO1 to 31,9% for RO2

1Note that the numbers of RO1, RO2 and RO3 deviate slightly from the previous analyses due to the
fact that only listener responses with a head and/or vocal component were considered
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and 35,9% for RO3. A χ2 test shows that this increase is significant (χ2(2, 2377) =

21.1, p < 0.001). Thus, at the moments where more than one listener responds (RO2
and RO3) it is significantly more likely that a listener will choose a deviated response.

5.7 Conclusion

The conversational analyses presented in this chapter gave insights into the relation
between actions of the speaker and the occurrence of a response opportunity. With the
study on the IFADV corpus [141], this is the second corpus on which listener response
inviting cues have been investigated for Dutch. The findings mostly corroborate the
findings on the IFADV corpus. For eye gaze and speech activity the analyses mostly
findings from earlier literature on other languages as well. The pitch correlogram
mostly resembles the correlograms for Spanish and English [151], but the high pitch
cue is much more present is this corpus.

The novel aspect of these analysis is that the MultiLis corpus gives insight into
the graded optionality of the response opportunities. The correlograms for eye gaze
and speech activity showed that these cues are more often present for response op-
portunities where all three listener responded than for response opportunities where
only two or one listener responded. This suggests that the speaker used more cues to
signal the response opportunity at these moments and the listener responded to that.
Furthermore, the setup of the MultiLis corpus allowed us to compare the chosen form
of the listener response from different listeners. The results showed that listeners are
more likely to deviate from their typical response when the response opportunity is
less optional (more listener responded). This suggests that the listeners recognize
that the speaker specifically wants a listener response to be given at these moments
and makes an extra effort to give one.

With these analyses we identified several behavioral patterns of the speakers that
are useful for the automatic prediction of the timing of listener responses, which
will be the topic for Part III of the thesis. We have seen that features describing the
speech activity, energy, pitch and eye gaze of the speaker all contain cues for listener
responses. Thus, these will be used as input features for the models that are learned
on the MultiLis corpus.
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Part III

Predicting the Timing of Listener
Responses





6
Listener Response Prediction Models

This Chapter will give a survey of the listener response prediction models that have
been developed over the years. The survey will focus on listener response predic-
tion models that have been developed based on observations on human-human in-
teractions or are directly learned from these interactions. Another requirement for
inclusion was that the performance of the model has been evaluated.

Since 1989, when Watanabe & Yuuki [154] proposed their “voice reaction system
with a visualized response equivalent with nodding”, a wide variety of listener re-
sponse prediction models have been proposed. These models have mainly focused on
the prediction of generic listener responses. Models for specific listener responses and
closely related phenomena such as grounding and detection of turn relevant places
are out of the scope of this survey.

Even though the proposed prediction models for generic listener responses differ
in many aspects, the general approach to the problem has not changed much since the
first model by Watanabe & Yuuki. Based on a corpus of human-human interactions a
model is learned that matches the behavior of the speaker to the presence or absence
of a generic listener response from the listener. These models for generic listener
response react to easily extractable features from audio and (sometimes) video signal,
describing the behavior of the speaker. Based on these features the model infers a
decision value that is associated with the occurrence of a generic listener response.
If this decision value is high enough a listener response is predicted. The predictions
made by the model are then evaluated.

What follows is a survey of the listener response prediction models that have been
proposed in the past. An overview of the models included in the survey is presented
in Table 6.1. The survey focusses on the differences between approaches. These
differences will be discussed for the following aspects.

• Corpus - During the development and evaluation of the listener response predic-
tion model a corpus containing examples of human-human interaction is used.
In these corpora the behavior of the speaker and listener are annotated. The
corpora that are used differ in language, available communication channels be-
tween interlocutors, topic and nature of the interaction. (Section 6.1)
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• Features - The behavior of the speaker is described in a feature vector that
is constructed by extracting descriptive features from the audio and/or video
signal of the recordings. Proposed approaches differ in which features are used
and how features from multiple modalities are combined. (Section 6.2)

• Model - The model is the technique that is used to infer the relation between the
feature vector with observations describing the behavior of the speaker and the
occurence of a listener response in the corpus. The proposed approaches differ
in segmentation of the data and machine learning model used. (Section 6.3)

• Evaluation - In the end the model is evaluated. This is done by comparing the
generated behavior based on the predictions of the model to the behavior of the
recorded listener and/or by having human judges rate the generated behavior.
Besides this distinction approaches also differ in performance measure, margin
of errors and ground truth selection. (Section 6.4)

6.1 Corpus Data

The corpora used in the development and evaluation of the listener response predic-
tion models differed in several aspects, such as language, communication channels,
topic of the interaction and distribution of the speaking role.

The first models were developed on corpora in the Japanese language [154, 115,
114, 153, 51, 136, 88, 113]. Later models were developed using corpora in other
languages, such as English [153, 28, 107, 79, 78, 108, 116, 118, 124, 110, 100, 117],
Chinese [151], Spanish [151, 100], Arabic [100], Dutch [121] and Swedish [133].

The corpora also differed in the communication channels that were available to
the interlocutors. The interactions were either only using the audiochannel, so the
interlocutors could not see each other [115, 153, 136, 88, 113, 151] or face-to-
face [154, 114, 51, 107, 79, 78, 108, 116, 118, 100, 117]. The HCRC Map Task
corpus used in [28, 110] includes interactions in both settings. Poppe et al. [121]
used avatar-mediated interactions, where the speaker was talking to a generated vir-
tual listener. Skantze [133] used interactions where the speaker had to imagine the
presence of a listener.

Finally, the topic and nature of the interaction differed between the corpora. In
some corpora the interlocutors were assigned roles, where one interlocutor was as-
signed the role of speaker and the other the role of listener [154, 115, 28, 107, 79, 78,
108, 116, 118, 124, 110, 100, 121, 133, 117], while in others no such distinction was
made in advance [114, 153, 136, 51, 88, 113, 151]. The topics of conversation ranged
from free topic dialogue [114, 153, 136, 51, 88, 113, 151] or monologue [121] and
emotionally colored dialogues [124] to more structured interaction such as the utter-
ing of a telephone message [154], telephone ordering [115], summarizing a video
clip [107, 79, 78, 108, 116, 118, 117], storytelling [100] and giving navigation in-
structions [28, 110, 133].
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6.2 Features

The behavior of the speaker the model needs to react to is described by a feature
vector. This consists of several features that describe several aspects of the behavior
extracted from the audio and/or video signal observing the speaker. Most models
only use features extracted from the audio signal, but more recently the video signal
has been used as well.

Features that have been extracted from the audio signal are a binary representa-
tion of speech/non-speech [154, 115, 114, 153, 28, 136, 88, 113, 107, 79, 78, 108,
116, 118, 124, 151, 110, 100, 133, 117], pitch [115, 114, 153, 136, 51, 113, 107,
108, 116, 118, 124, 151, 110, 100, 121, 133, 117], energy/intensity/power [115,
114, 136, 51, 88, 113, 107, 108, 116, 118, 110, 100, 121, 133, 117], part-of-speech
tags [28, 136, 88, 113, 116, 118, 117], individual words [107, 79, 78, 108, 116,
118, 117], grammatical function of the words (e.g. subject, object etc.) [118, 117],
MFCC[110, 121] and voice quality [100]. Especially for pitch and energy, not only
the raw values are used, but also descriptions of the contour.

The features that have been used from the video signal so far are eye gaze (whether
the speaker looks at the listener or not) [107, 79, 78, 108, 116, 118, 124, 117], head
movement [118, 117] and eyebrow movement [118, 117].

These features can be categorized in several modalities, such as acoustic (speech/non-
speech, pitch, energy, MFCC, voice quality), lexical (words), part-of-speech (tags),
syntactic (function of the words) and visual features. These feature categories each
work on a different time-scale. When combining these features categories for a mul-
timodal prediction model one of two approaches can be taken; early fusion or late
fusion. In early fusion models the multiple modalities are merged in the feature stage
and ultimately one model is learned, while in late fusion models separate models are
learned for each modality and the outcome of these models is then combined to give
the final prediction. The approach by Ozkan et al. [118, 117] is currently the only
late fusion model developed.

6.3 Models

Two types of model; continuous models and segmented models.

The distinction between these models is in the rate at which the model produces
predictions. Continuous models make a prediction at each frame. This frame is a
fixed unit of time at which the incoming signals are sampled and processed. The
most common frame rates for continuous models are 30 and 100 Hz.

Segmented models only make a prediction after a certain event has taken place
in the interaction. These events are the completion of an inter-pausal unit (in other
words, the detection of a pause), the completion of a word or each 100 ms of pause.

In the following sections more details about these models and the machine learn-
ing techniques that are used for them will be explained.
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6.3.1 Continuous Models

The majority of models process the incoming data from the speaker continuously [154,
115, 153, 107, 108, 116, 118, 124, 117]. This means that a prediction for a listener
response can be made at each frame of the interaction. No specific events are required
before a prediction is made by the prediction model.

For this continuous classification task researchers have used handcrafted rules
based on corpus statistics [154, 153, 124, 151], Finite State Transductor [51], Hid-
den Markov Model [115, 107, 108], Support Vector Machines [121], Conditional
Random Fields [107, 79, 78, 108, 116, 118, 117], Latent Dynamic Conditional Ran-
dom Fields [118, 117] and Latent Dynamic Mixture of Experts model [118, 117].

6.3.2 Segmented Models

As mentioned earlier, the unit of segmentation for segmented models differs between
approaches. Several researchers [114, 110, 100, 133] have used inter-pausal units
as segments. These models are only capable of predicting a listener response af-
ter/during a pause. These proposed models predict for each such segment whether it
is followed by a listener response or not. The segmentation used by Cathcart [28] is
at the word level. Both Takeuchi et al. [136] and Kitaoka et al. [88] have proposed a
model that classifies frames with no speech from the speaker. These pauses were split
into segments of 100ms. For each of these segments the pause was classified as either
‘making a listener response’, ‘taking the turn’, ‘waiting for the speaker to continue’ or
‘waiting to make a listener response or take the turn’.

The machine learning techniques researchers have used for the classification of
these segments are several types of decision trees [114, 136, 88, 113, 100, 133],
handcrafted rules based on corpus statistics [28], the Gaussian Mixture Model [110]
and Support Vector Machines [100, 133].

The models that segment the incoming data into bigger chunks are at a disad-
vantage when it comes to placement of listener responses. They usually limited
placement of listener responses to places where the speaker is silent. However, in
Section 5.2 it was shown that only about 50% of listener response are actually placed
at such times. Listener responses are often placed a few hundred milliseconds before
the end of an utterance.

6.4 Evaluation

Finally, the models that are developed need to be evaluated. Also in this area there
are many differences between approaches as is shown by the overview in Table 6.2.
The main distinction between evaluations is between objective and subjective eval-
uations. For objective evaluations the performance is measured by comparing the
predictions of the model to the recorded ground truth labels. For subjective evalua-
tions the performance is measured by human judgment of the generated behavior. In
the following section more details will be presented about similarities and differences
between approaches in this regard.
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6.4.1 Objective Evaluations

In objective evaluations of listener response prediction models the predictions made
by the models are compared to the ground truth. A measure is selected which quan-
tifies the comparison. Measures that are used to report objective evaluations include
cross-correlation coefficient [154], precision [133], recall [110], precision and re-
call [115, 114, 153, 136, 124] or F1 (which is the weighted harmonic mean of pre-
cision and recall) [28, 88, 107, 108, 116, 118, 117, 100]. Most authors opt for a
measure based on precision and/or recall, but in two areas differences between mea-
sures remain, namely ground truth selection and margin of error.

Ground Truth Selection

The majority of evaluations of listener response prediction models are performed by
comparing the predictions made by the model with the listener in the corpus [115,
153, 28, 136, 88, 107, 108, 116, 118, 124, 110, 100, 117]. As Ward and Tsuka-
hara [153] have noted this is not ideal. When analyzing the performance of their
predictive rule they conclude that 44% of the incorrect predictions were cases where
a listener response could naturally have appeared, as judged by one of the authors,
but in the corpus there was silence or, more rarely, the start of a turn. Cathcart et al.
[28] dealt with this problem by only using high backchannel rate data as test data in
order to minimize false negatives. Skantze [133] had one annotator annotate each
inter-pausal unit as either inappropriate, expected or optional. For the experiments
only the inter-pausal units annotated as inappropriate or expected were used during
training and evaluation.

Others have dealt with this problem by collecting multiple perspectives on ap-
propriate times to provide a listener response. This was either by asking multiple
people to press a key on a keyboard at times they would give a backchannel in reac-
tion to a recorded speaker [114, 79, 78] or by asking multiple people to intentionally
nod [154].

Recently a measure has been proposed that is specifically aimed at being applied
to such multiple perspective data. Ozkan and Morency [117] have proposed User-
Adaptive Prediction Accuracy as an evaluation metric for listener response prediction
models. For this measure the model is asked for n most likely listener response mo-
ments in reaction to a speaker, where n is the number of listener responses given by
the ground truth listener. This measure allows evaluation of the ability of the model
to adapt to different listeners. Some listeners may give a response frequently, while
others give a response only a limited number of times.

Margin of Error

For the models evaluated using precision and recall based measures on continous data
another discriminating factor applies, namely the margin of error. Precision and recall
based measures rely on the evaluation of whether a prediction is ‘at the same time’
as the ground truth. The definition of ‘at the same time’ differs between evaluations.
Okato et al. [115] use a margin of error of -100ms to +300ms from the onset of
the ground truth listener response, Ward and Tsukahara [153] use a margin of error
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of -500ms to +500ms, Poppe et al. [124] use a margin of -200ms to +200ms, and
Morency et al. [107, 108] and Ozkan et al. [116, 118, 117] use a margin of error of
0ms to +1000ms.

6.4.2 Subjective Evaluations

When it comes to subjective error measures several strategies have been used to es-
tablish the performance of the models. The approaches used so far either evaluate a
general impression of the listening behavior or individual listener responses.

Fujie et al. [51] made a pair-wise comparison between models in which the gen-
eral impression of the listening behavior was measured. A subject interacted twice
with a conversation robot system whose listening behavior was driven by two differ-
ent models. After these interactions the subject was asked on a 5 point scale, which
system they preferred, with 1 being system A, 5 being system B and 3 being no pref-
erence.

Huang et al. [79] also evaluated the general impression of the listening behavior.
They generated virtual listeners in response to recorded speakers and presented these
interactions to 17 subjects. Similar to Fujie et al. [51] the subjects were presented
with three different virtual listeners each driven by a different listener response pre-
diction model. After each interaction the subject was asked 7 questions about their
perceived experience with regard to the timing of listener responses. On a 7-point Lik-
ert scale the subjects rated the virtual listeners on ‘closeness’, ‘engrossment’, ‘rapport’,
‘attention’, ‘number of inappropriate listener responses’, ‘number of missed opportu-
nities’ and ‘naturalness’.

Poppe et al. [124] also let participants evaluate virtual listeners in interaction
with recorded speakers. They asked participants for each fragment “How likely do
you think it is that the listener’s behavior has been performed by a human listener”.
The participants made their judgement by setting a slider that corresponded to a value
between 0 and 100.

Kitaoka et al. [88] had 5 subjects rate each generated listener response individ-
ually. The data presented to the subjects were 16 to 18 samples of single sentences
followed by a backchannel. Each generated listener response rated was rated on a
5-point scale ranging from ‘early’ to ‘late’, with an extra option for ‘outlier’. They
carried out this process for listener responses generated at times predicted by their
model and times as found in the corpus. The authors accumulated the counts of the
5 subjects and reported the percentage of ratings in the “good” category (rating 3).
The same approach was used by Nishimura et al. [113].

In a later experiment Poppe et al. [121] evaluated their model in a switch-
ing Wizard-of-Oz setup. Two participants had an avatar mediated interaction. The
speaker would see an avatar representation of the listener. While holding a mono-
logue about different topics, the speaker had to judge the listening behavior of the
avatar on the screen. The listening behavior of the avatar on the screen switched sev-
eral times during the interaction between behavior generated based on a prediction
model and based on the listening behavior of the other participant. The speaker was
asked to hit the spacebar each time he thought the listening behavior of the avatar
was unnatural.



Listener Response Prediction Models | 73

6.5 Conclusion

This survey has shown that a wide variety of listener response prediction models exist
and that these models have been evaluated in almost as many different ways. This
makes comparing different methods in terms of performance even more complicated
than it already is. Most models are trained and tested on different corpora, which
differ in language, type of conversations and amount of data. This already makes
a comparison between reported values unreliable. On top of these differences the
evaluation methods used also differ from each other. So, it is hard to say which
model is best, although some papers include comparisons to previous methods.

Most previous models simply combined all data available into one big training set.
By doing this individual differences in speaking and listening behaviors are discarded
and therefore valuable behavioral patterns from outliers are lost in the process. In
the following chapters three new listener prediction models will be introduced that
embrace these individual differences and similarities.

The first model, presented in Chapter 7, focuses on using the consensus perspec-
tive from the parallel recorded listeners in the MultiLis corpus. The model uses the
consensus perspective during learning as well as evaluation in a novel way to make
the listener response prediction model sensitive to the graded optionality of the re-
sponse opportunities in the corpus. The model values the response opportunities with
multiple responses more highly, while not ignoring the response opportunities where
only one listener responded.

The second model, presented in Chapter 8, focuses on using the perspectives ob-
tained using the individual perceptual evaluation method (Section 3.2) as negative
samples during learning to have a more accurate ground truth. Through iterative
learning and perceptual evaluation the model is refined and additional training data
becomes available.

The final model, presented in Chapter 9, focuses on learning a model for each
speaker individually instead of learning a single prediction model for all speakers as
is usually done. Speakers can differ wildly in how they behave when speaking. Some
may look at the listener often and long, while others only occasionally for a brief
period. Some are fluent in their speech, while others often hesitate. If a model is
dependent on a certain cue (e.g. the speaker looking at the listener) and a speaker
does this less frequently than most of the speakers in the training data, the model
will most likely fail to work properly. General models tend to gravitate to modeling
the behavior of the majority of the speakers and behavioral patterns from outliers
are often lost in the numbers. With a collection of models trained on each speaker
indepently, when a new speaker is encountered one can find the speaker from the
training data that behaves most similarly and use the model that has been trained for
that speaker.
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7
Learning and Evaluating Using the Consensus

Perspective

In Section 2.3 the consensus perspective was introduced. The consensus perspec-
tive was defined as the complete coverage of all identified response opportunities in
a corpus and for each identified response opportunity, the number of listeners that
responded to that response opportunity. This consensus perspective captures the dif-
ferences and similarities between individuals with respect to listening behavior. In
this chapter we will explore the advantages the consensus perspective brings to the
prediction of listener responses. In particular we will look into how this consensus
perspective can be used to select more accurate positive samples for the ground truth
labels.

How the consensus perspective will be used to improve the state of the art of
listener response prediction in both learning and evaluation will be discussed in Sec-
tions 7.1 and 7.2 respectively. This will be followed by a description of the experimen-
tal setup that was used to evaluate these contributions in Section 7.3. Results of the
experiments will be presented and discussed in Section 7.4, which will be followed
by the conclusion in Section 7.5.

7.1 Using Consensus Perspective during Learning

The goal of our prediction model is to create real-time predictions of listener re-
ponses based on features of human speakers (see Figure 7.1). Our machine learn-
ing approach trains a sequential probabilistic model from a database of consensus
interactions and uses this trained model to generate listener responses. A sequen-
tial probabilistic model takes as input a sequence of observation features (e.g., the
speaker features) and returns a sequence of probabilities (i.e., probability of listener
response). During learning, the ground truth labels which mark the appropriate re-
sponse opportunities are required as well as the speaker features. How this ground
truth labels are established is what differentiates our approach from traditional meth-
ods.

The MultiLis corpus collected several perspectives on listening behavior. By only
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Figure 7.1: Learning using parallel listener consensus. A sequential probabilistic model is trained
offline using as input a sequence of observation features (e.g., the speaker features) and the
ground truth labels from the consensus data (Consensus 2 in this figure). The prediction model
returns a sequence of probabilities (i.e., probability of listener response) during the online testing.

considering the perspective from the displayed listener this corpus can be regarded
as any other corpus of recorded one-to-one interactions with its limitations caused
by individual differences in listening behavior. Some individuals give a lot of listener
responses, while others use their responses more sparingly. If the recorded listener
provides only a few responses during the interaction, it does not necessarily mean that
there are only a few response opportunities. Thus, some of the data is mislabelled as
negative samples, while in fact these would be valid response opportunities.

But the MultiLis corpus also offers the listening behavior of the concealed listen-
ers. These can be used during learning. By recording more people less of our data is
mislabelled as negative examples. As was shown in Section 2.3.2 using the displayed
listeners gave in total 879 responses to response opportunities, but the two additional
perspectives have increased this to identify 1733 response opportunities in the con-
sensus perspective. This is almost a doubling of the number of positive samples.

The consensus perspective does not only improve the quality of negative samples
and increase the number of positive samples, but also provides information about the
importance of each response opportunity, reducing the effect of outliers. To some
response opportunities all three listeners responded; whereas to some others, only
two or mostly one of the listeners responded. As was shown in Chapter 5, the re-
sponse opportunities to which three listeners responded are more clearly cued by the
speaker than response opportunities to which two listeners responded and even more
than opportunities to which only one listener responded. The speaker will have ex-
pected a response at these moments. By emphasizing these response opportunities
during learning the resulting model should be better tuned to predict these response
opportunities and will therefore result in a better model.
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7.2 Using Consensus Perspective during Evaluation

The consensus perspective can also be used to give a more reliable performance mea-
sure during evaluation. We propose a new evaluation criteria which uses the con-
sensus perspective to better define the concepts of exactness (mislabels) and com-
pleteness (missed labels) for prediction models. The basis of our consensus-based
measure is the F1 measure, which is the weighted harmonic mean of precision and
recall. Precision is the number of correctly predicted listener responses divided by the
total number of predicted listener responses (correct or not). It is a measure of ex-
actness, highlighting the effect of false positives (i.e., predicted responses mislabeled
as positive). Recall is the number of correctly predicted listener responses divided by
the total number of listener responses (i.e., ground truth). It is a measure of com-
pleteness, highlighting the effect of false negatives (i.e. listener responses that were
not predicted correctly). The main idea behind our new consensus-based measure is
that precision and recall should not be computed using the same ground truth ele-
ments. How this is achieved is highlighted by the following two concepts; consensus
exactness and completeness.

• Consensus exactness - The typical approach for computing the false positives
(necessary for the precision measurement) is to look at the ground truth re-
sponses from the displayed listener. The problem with this approach is that
while the displayed listener may not have given a listener response at a specific
point in time, another person could have given a response at that moment. With
the consensus perspective we have the listening behaviors from concealed lis-
teners at our disposal to counter this shortcoming. We propose that consensus
exactness should take into account all listeners and classify a prediction as false
positive only if none of the listeners responded at that moment. This concept
implies that precision should be computed using all identified response oppor-
tunties as ground truth.

• Consensus completeness - If all response opportunities were used to compute
the false negatives (necessary for the recall measurement), the perfect model
would be a model which is able to predict all response opportunities from any
listener. This model would end up giving responses at a much higher frequency
than any individual person. The experiment of Huang et al. [79] has shown that
a virtual human based on the consensus of several listeners is perceived as most
believable when the rate of generated responses is similar to the average rate
of all listeners. Based on this observation, we propose that consensus complete-
ness should be correlated with a consensus level which has an average number
of ground truth responses equal to the average rate from all listeners. In this
proposition the consensus level means the number of listeners that need to re-
spond to the response opportunity before the response opportunity is included
as a ground truth for the computation of recall.

Based on these two concepts, we define our consensus-based evaluation criteria
Fconsensus as follows:
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FConsensus = 2 ∗ Precisionall ∗Recallt
Precisionall +Recallt

In Equation 7.2 the precision Precisionall is calculated using all response oppor-
tunities in the consensus perspective and the recall Recallt is calculated using only
the response opportunities where at least t listeners responded. t is automatically
selected such that the average rate of ground truth responses is as close as possible to
the desired rate (average rate from all listeners).

In the MultiLis corpus, the average response rate is 5.8 responses per minute. The
closest match to this is Consensus t = 2 (i.e., at least two listeners responded at that
moment) with 4.5 responses per minute. The combination of Precisionall, which
takes care of the mislabelled negative samples, and the Recallt, which keeps an av-
erage response rate, results in a more reliable performance measurement. Using this
performance measure means that the model will maximize the number of predicted
responses at times where at least two listeners responded, while only regarding re-
sponses predicted at moments where no listener responded as false positives.

7.3 Experimental Setup

In this section the experimental setup will be explained. In this experiment five mod-
els were trained that differ in the way the consensus perspective is used to select
ground truth labels. The models are evaluated on four performance measures again
differing in the way the consensus perspective is used to selected ground truth labels.
First, the model and corpus used to train the prediction models will be presented. This
will be followed by a description of the features that are used to describe the behavior
of the speaker. Finally, the difference between the five models and four evaluation
measures will be explained.

7.3.1 Machine Learning Model

The machine learning models trained in our experiments were Conditional Random
Fields (CRF) [95] and were trained using the hCRF library [1]. CRF is a probabilistic
discriminative model for sequential data labeling. A CRF learns a mapping between
a sequence of observations, in this case the features describing the behavior of the
speaker, and a sequence of ground truth labels, here the onsets of response opportu-
nities from the consensus perspective. The learned model returns a prediction value
curve with a value at each frame indicating the probability of response opportunity.
After smoothing the prediction value curve can be used to predict response oppor-
tunities by detecting peaks in the curve. By comparing the heights of these peaks
to a fixed threshold the most probable moments are selected as predicted response
opportunities.

We used 31 interactions from our Dutch spoken MultiLis corpus presented in
Chapter 2. All models were trained with the same training set of 21 interactions
and tested on the same test set of 10 interactions. The test set did not contain in-
dividuals from the training set. The objective function of the CRF model contains a
regularization term to prevent overfitting. During training, this regularization term
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was validated with values 10k, for k = −3..3 using a 3-fold strategy on the training
set.

7.3.2 Multimodal Features

The behavior of the speaker is described using acoustic, lexical and visual features.

• Acoustic Features - Utterance, pause and pitch are used as acoustic features.
Utterence and pause are binary features extracted using the segmentation from
the Dutch automatic speech recognition software SHoUT [81]. The minimum
length for a pause is 100 ms. Utterences with a pause smaller than 100 ms
between them are combined. Pitch (F0) is extracted using openSMILE [46] at
a 10 ms interval. To filter out some of the missed frames, the raw pitch values
are smoothed with a window size of 5 frames. Finally, the pitch values are
discretized into percentiles.

• Lexical Features - The words recognized by SHoUT are used as lexical features.
Each word is represented as a binary feature which is true at the times the word
is spoken.

• Visual Features - Eye gaze and blinks are used as visual features. For eye gaze
the human coder annotated whether the speaker was looking at the listener
(directly into the camera) or not. Gazes at the listener were occasionally in-
terrupted by blinks of the speaker. Even though the gaze was interrupted for
a moment, the listener would still have the perception that the speaker was
addressing him/her. Therefore the “continued gaze” feature where the blinks
between and after a gaze annotation are included in the interval was created.
From both the normal gaze and the continued gaze features a “blinked” variant
was created, which only includes the gaze intervals which were preceeded by a
blink.

Early fusion is used to combine the features from different modalities. No feature
selection is performed. All models are trained using all features.

7.3.3 Ground Truth Labels

The goal of the experiment was to find the best way to use our consensus perspective
to define the ground truth labels for learning and evaluating listener response predic-
tion models. In this experiment five models were evaluated and compared to each
other. Each model differs in the strategy that was used to select the positive ground
truth labels.

• Displayed Listener Only - Our first model was a CRF model trained only using
listener responses of the displayed listener as the ground truth labels. This
model was our main baseline for our experiments since most previous work
used this approach (such as [28, 108, 153]). This model is referred to as the DL
only model in the remainder of the chapter.
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• All Listeners - In the second model, the listener responses of both the displayed
listener and the two concealed listeners were used individually as ground truth
labels. No consensus perspective was built, but samples where two listeners
responded at the same time were simply duplicated in the data set. This model
is referred to as the ALL model in the remainder of the chapter.

• Consensus 1, 2 and 3 - The last three models were trained using the consensus
perspective. The Consensus 1 model included all response opportunties from the
consensus perspective. So all the 1733 response opportunities to which at least
one listener (either the displayed listener or one of the concealed listeners) re-
sponded were used as ground truth label. The Consensus 2 model only included
the 593 response opportunities to which at least two listeners have responded
as ground truth label and the Consensus 3 model only used the 128 response
opportunities to which all three listeners responded.

In all models the negative ground truth labels were selected at random times
where no positive sample was found. The ground truth labels were normalized to the
same length of 700ms. For each response opportunity, the mean onset of the responses
belonging to this response opportunity is calculated. The ground truth label starts at
the 350ms before this mean onset time and ends 350ms after it.

7.3.4 Evaluation

The secondary goal of the experiment was to evaluate our proposed Fconsensus perfor-
mance measure. Therefore, each model is evaluated on four evaluation metrics that
again differed in their ground truth selection.

• F1 using displayed listener only - For this measure only the listener responses
of the displayed listener were used as ground truth labels. Using these labels
the F1 measure was calculated.

• F1 using consensus 1 - For this measures the consensus perspective was used as
ground truth labels. Both precision and recall ere calculated using all response
opportunities in the consensus perspective as ground truth labels.

• F1 using consensus 2 - For this measure both precision and recall were cal-
culated using only the response opportunities with at least two responses as
ground truth labels.

• Fconsensus - For this measure the precision was calculated using all response
opportunities as ground truth labels and recall was calculated using only the
response opportunities with at least two responses.

7.4 Results and Discussion

During our experiments five models were trained using various strategies to establish
ground truth. These models were evaluated on four different performance measures.
The results of these experiments will be discussed per performance measure.
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Model F1 Precision Recall

Baseline (DL Only) 0.265 0.268 0.262

All Listeners 0.255 0.188 0.392

Consensus 1 0.225 0.166 0.352

Consensus 2 0.264 0.199 0.391

Consensus 3 0.239 0.170 0.402

Table 7.1: The performance of our five models measured using only the displayed listeners ground
truth labels.

Consensus 1 Consensus 2

Model F1 F1

Baseline (DL Only) 0.278 0.253

All Listeners 0.377 0.255

Consensus 1 0.318 0.213

Consensus 2 0.375 0.287

Consensus 3 0.364 0.256

Table 7.2: The performance of our five models measured using the Consensus 1 and Consensus
2 ground truth labels.

7.4.1 F1 using displayed listener only

In Table 7.1 the performances of the five response prediction models are presented as
measure by F1 using only the listener response from the displayed listener as ground
truth. This can be seen as the baseline performance of the models as this is the
most frequently used way to measure the performance of listener prediction models
(see Section 6.4.1). The performance of our baseline DL only model (F1 = 0.265) is
comparable to the performance of Morency et al. [108] (F1 = 0.256). Out of the other
models that make use of the additional listeners in the MultiLis corpus the Consensus
2 model performs best (F1 = 0.264), which is comparable to the DL only model. The
ALL model performs only slightly worse (F1 = 0.255). The other approaches perform
less well as the baseline model on this performance measure.

7.4.2 F1 using the Consensus Perspective

As discussed in Section 7.3.4 the MultiLis corpus provides us with more informa-
tion than only the responses of the displayed listener. We also have the responses
of the concealed listeners available to us and this information can also be used dur-
ing evaluation to get a more precise performance measure dealing with exactness
and completeness. Because of individual differences the displayed listener and the
concealed listeners do not always respond at the same time. The displayed listener
may miss response opportunities to which one or both of the concealed listeners re-
sponded. A prediction of our model at such a missed response opportunity should not
be counted as a wrong prediction, since according to our corpus, these are moments
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Model Fconsensus Precisionall Recallt
Baseline (DL Only) 0.347 0.419 0.297

All Listeners 0.425 0.370 0.499

Consensus 1 0.358 0.311 0.421

Consensus 2 0.439 0.373 0.534

Consensus 3 0.417 0.338 0.542

Table 7.3: The performance of our five models measured on our Fconsensus measure. The differ-
ence between our Baseline model and Consensus 2 is marginally significant, p = 0.054.

where listeners do provide responses.
The consensus perspective contains all response opportunities to which at least

one listener responded. The middle column in Table 7.2 shows the performances of
the five models measured by the F1 measure calculated using consensus 1 as ground
truth labels. On this measure the ALL (F1 = 0.377), Consensus 2 (F1 = 0.375) and
Consensus 3 (F1 = 0.364) models perform significantly better than the DL Only model
(F1 = 0.278). The Consensus 1 model (F1 = 0.318) also performs better than the
baseline model, but significantly worse than the other models.

However, this measure does not reflect what people consider to be the behavior of
a believable and attentive virtual human. If a response is generated at each response
opportunity in the consensus perspective the response rate would be twice as high as
the average listener in the corpus. Using a similar data set, Huang et al. [79] have
shown that a virtual human which responds at moments most people would respond
at is the most believable.

In our consensus perspective this corresponds to the response opportunities where
at least two listeners have responded. Using these ground truth labels the response
rate is closest to the response rate of the average listener. The right column in Ta-
ble 7.2 shows the performances of the five models measure by the F1 measure cal-
culated using consensus 2 as ground truth labels. Again, the Consensus 2 model
(F1 = 0.287) performs slightly better than the baseline DL only (F1 = 0.253), ALL
(F1 = 0.255) and Consensus 3 (F1 = 0.256) models.

7.4.3 FConsensus

Measuring the performance on Consensus 2 re-introduces the problem of the Dis-
played Listener Only evaluation, where response opportunities are mislabelled as
negatives. Our Fconsensus measure solves the problems of exactness (mislabels) and
completeness (missed labels) by calculating precision on Consensus 1 and recall on
Consensus 2. The results of our model on this measure are presented in Table 7.3.
The Consensus 2 model (Fconsensus = 0.439) performs better than the baseline DL only
model (Fconsensus = 0.347). The difference is marginally significant, p = 0.054. Also
the models trained on ALL (Fconsensus = 0.425) and on Consensus 3 (Fconsensus =

0.417) perform better.
So, overall, learning a model using the response opportunities where at least two

listeners responded as ground truth performs best in all cases. The proves the useful-
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ness of the consensus perspective in the learning phase. Furthermore using Fconsensus

as performance measure gives us a more reliable performance measure which takes
advantage of the consensus perspective to better define the concepts of exactness
(mislabels) and completeness (missed labels) for prediction models.

7.5 Conclusion

In this chapter, the usefulness of the consensus perspective was shown for both learn-
ing and evaluating probabilistic prediction models of listener responses. To improve
the learning performance, the consensus perspective helps us to reduce outliers in the
positive samples. Across all performance measures learning a model using response
opportunities where at least two listeners responded as ground truth labels performed
best.

Furthermore, a new performance measure called Fconsensus was proposed which
takes advantage of the consensus perspective to better define the concepts of exact-
ness (mislabels) and completeness (missed labels) for prediction models. By calcu-
lating precision using all response opportunities and recall using only the response
opportunities where the majority of the listeners responded the performance mea-
sured matches the perception of the behavior more closely.

At this time only three parallel recorded listeners were used, but getting more lis-
teners in parallel or by using the parasocial perspectives the improvements these tech-
niques bring could be even greater. More listeners would mean having an even bigger
coverage of the response opportunities and therefore fewer false negative samples.
Furthermore, a more accurate threshold could be selected for the minimum number
of listeners that need to respond to a response opportunity for the ground truth labels
(for both ground truth labels in learning and in the Fconsensus measure), reducing
outliers.
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8
Learning using Individual Perceptual Evaluation

The previous chapter has shown the merits of the increase in coverage of all possible
response opportunities in the MultiLis corpus. This increase in coverage was obtained
by the combination of multiple perspectives on listening behavior from the recordings
of the three listeners. Beside the collection of perspectives on appropriate timing of
listener responses Chapter 3 also introduced the collection of multiple perspectives
on inappropriate timings of listener responses. These perspectives were collected
using the Individual Perceptual Evaluation method presented in Section 3.2. This
chapter will show how the perspectives obtained using this method can be used in
the development of listener response prediction models. The main focus will be on
selecting better negative samples for the ground truth labels.

8.1 Iterative Perceptual Learning

The ground truth labels that are used in the learning and evaluation of listener re-
sponse prediction models consist of examples of both positive and negative moments
of the behavior. Most attention is usually paid to the collection of positive samples,
moments where a listener response is appropriate. This is done by recording a corpus
in which the listener responses that are given by the interlocutors are carefully anno-
tated. In contrast, negative samples are usually simply collected by making a random
selection of moments that do not overlap with the positive samples. However, as was
argued before, it is not certain that a moment where no listener response is given is ac-
tually an inappropriate time for such behavior. Giving a listener response is optional.
It is likely that one or more of those negative samples are actually mislabelled positive
samples. These mislabeled samples hinder the learning of the prediction models. By
using the consensus perspective in our previous model the chances of this happen-
ing were reduced, but not eliminated. Only three perspectives were combined and
the parasocial perspectives collected in Section 3.1 already showed that additional
perspectives still identify many other response opportunities.

With Individual Perceptual Evaluation a method was introduced that can produce
the ground truth negative samples needed for learning our prediction model. In this
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Figure 8.1: Overview of the proposed iterative perceptual learning approach. Initially in the boot-
strap phase a model is learned on a set of interactions with positive labels and randomly selected
negative labels. This model is used in the first iteration to generate listening behavior on new
interactions that a human judge evaluates. The subjective ratings resulting from this evaluation
are used in following iterations as verified negative labels.

method humans observe a virtual listener and rate the timing of the generated listener
responses. Each time the humans observe an inappropriate listener response they
hit a key on the keyboard. Beside an evaluation of the performance of the model
that generated these listener responses, these subjective ratings can act as negative
training samples for subsequent models. In this chapter an approach is proposed that
uses such ratings as negative samples. This approach is called the iterative perceptual
learning approach.

In Figure 8.1 the development cycle of the proposed iterative perceptual learn-
ing approach is illustrated. The development cycle starts with learning a bootstrap
model. This bootstrap model is trained on a (small) subset of the corpus. The positive
samples of the ground truth are the listener responses found in the corpus and the
negative samples are randomly selected. This bootstrap model is used to generate
listening behavior in response to the speaker of a new set of interactions. Next, the
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generated listening behavior is observed and judged by human observers using the
individual perceptual evaluation method. Then, a new model is learned using the
positive samples from the listening behavior of the original listener in the corpus and
the negative samples from the subjective ratings of the generated listening behavior.
Using the same methodology this new model can then be evaluated again.

Besides the fact that using the subjective ratings as negative samples gives us
verified ground truth negative samples, there is another benefit to this approach. The
negative samples are also at moments where the current model makes mistakes. This
means that if the process of learning and evaluating is repeated multiple times on new
data, the positive and negative samples should be selected at more relevant moments
each iteration. If the expressiveness of the features and the modelling power of the
machine learning model are strong enough, earlier mistakes should be avoided after
each iteration.

This approach is a variant of active learning. The type of learning has proven to be
a succesful method in improving training results in areas such as speech recognition,
information extraction and media classification [131]. Here, the application of the
technique on social behavior, in particular listening behavior is in question.

8.2 Experimental Setup

To test the Iterative Perceptual Learning (IPL) approach an experiment was set up that
compared the IPL approach to a baseline model. The IPL model was learned in one
bootstrap phase and four iterations. After each iteration the subjective ratings were
used to learn the new version of the IPL model. At each stage of the development
a baseline model was learned on the same data, but with random negative samples
instead of subjective ratings as negative samples. The models were evaluated using
these subjective ratings as well as objective measure comparing their predictions to
the listener responses found in the corpus.

In the remainder of this section more details of the experiment will be presented.
First the machine learning techniques will be explained, followed by a description of
the features. Then the ground truth labels will be presented and finally the evaluation
method.

8.2.1 Machine Learning Model

The machine learning models trained in our experiment were Support Vector Ma-
chines (SVM). Our interest lays in the relative performance of both approaches and
did not focus on obtaining an optimally performing model. Therefore, the default
settings of the libSVM library [31] were used without optimization of the parameters
involved. These settings were an RBF kernel with c = 1 and γ = 1/|x|, where |x| is
the dimensionality of the input vector.

For training a feature vector was extracted at each positive or negative sample
according to the ground truth labels. After training the SVM model was applied to
feature vectors taken at each frame on a 10 millisecond interval. To obtain the lis-
tener response prediction the numerical decision values were used. These can be
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regarded as confidence scores. By sequencing these decision values over time, a pre-
diction value curve is obtained representing the appropriateness to provide a listener
response. To remove artifacts due to the potentially highly non-linear output of the
SVM, this curve was smoothed with a 10 frame moving average. After this filtering,
the highest peaks in this curve were regarded to be the most likely moments to predict
a listener response. A fixed threshold was used to determine at which peaks a listener
response should be generated.

8.2.2 Multimodal Features

As mentioned earlier the SVM generates predictions in response to a feature vector.
This feature vector describes the behavior of the speaker. For this experiment 113
acoustic and 1 visual features were extracted from the audio and the video signal.

• Acoustic Features - As acoustic features pitch, intensity and the first 12 mel-
frequency ceptrum coefficients (MFCC) were extracted from the audio signal
using OpenEAR [46] at a frequeny of 100 Hz. Pitch detection is typically noisy
and can fail for a few frames during speech. To solve this issue, gaps in the
pitch values smaller than 8 frames were linearly interpolated, which is in line
with [153]. Between subjects, acoustic signals can vary significantly. For in-
stance, pitch is higher in females than in males, people speak with different
volume and/or had the microphone closer to their mouth. To account for these
differences between speakers the features were normalized by converting each
signal into the z-score equivalent. The means and standard deviations needed
for calculating the z-score were obtained from the first 10 seconds of each ses-
sion, which were excluded from the training data.

To aid the support vector machines in capturing the temporal relation between
the acoustic cues and the onset of a listener response, some of the temporal
aspect was encoded into the features. To this end the mean and the slope of
each signal were calculated over a period of 50ms, 100ms, 200ms and 500ms
prior to the onset of a listener response. As such, the behavior that was expected
to cue the listener responses was captured. The slope was calculated by fitting
a first-order polynomial to the signal.

Finally the speech/non-speech features were extracted using the SHoUT auto-
matic speech recognizer [81], indicating whether the speaker is talking or not.

• Visual Feature - Eye gaze was used as a visual feature. The feature is based on
the manual annotations of whether the speaker was looking at the listener or
not.

Both the speech/non-speech and eye gaze features were initially binary. To repre-
sent sequentiality, the relative offset to the moment where the speaker started talking
or started looking at the listener was calculated. Specifically, positive numbers denote
the offset from the start of the speaker’s speech and negative numbers the offset from
the start of a pause.

In summary, 14 acoustic signals were extracted, their z-scores were calculated
and their means and slopes for four different window lengths were obtained. A
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speech/non-speech feature was added for a total of 113 acoustic features. Eye gaze
was added as a final visual feature. Following the early fusion paradigm, all features
were concatenated into a 114-dimensional feature vector per frame. During learning
no feature selection was performed to selected the optimum feature set. All models
were trained using all features.

8.2.3 Ground Truth Labels

In Chapter 7 the difference in ground truth labels was in the positive samples. In this
Chapter the models that are compared differ in the selection of negative samples for
the ground truth labels.

• Baseline Model - In the baseline model the negative samples were obtained
from random selection. The samples were taken from the moments where no
listener response was given by the displayed listener. Due to the optionality of
backchannels, they possibly included false negatives. Typically, there is only a
small number of positive samples available in a corpus.

• Iterative Perceptual Learning Model - For the iterative perceptual learning
model (IPL model) the negative samples were obtained from the judgments col-
lected in the evaluation of each iteration. After a bootstrap model was trained
on one interaction using the baseline model approach, a virtual listener was gen-
erated based on this model. The behavior of this virtual listener was evaluated
using the individual perceptual evaluation method presented in Section 3.2.
The timing of generated listener responses that were judged by the participants
of the evaluation were used in the following iteration as negative samples in
the training phase. This process was repeated for four iterations, each with an
increased number of interactions as training and evaluation data.

Positive samples for both models are the moments where the displayed listener
provided a listener response. To increase the amount of training data and to make the
models less dependent on single frames, four additional frames around the positive
frame were selected using a normalized Gaussian distribution with a σ such that 95%
of the samples fell within 250ms of the positive sample.

For both models it was ensured that there was an equal number of positive and
negative samples. For the baseline model this was done by selecting the same number
of negative samples as there were positive samples in the ground truth. For the IPL
model the weight of each yuck response was determined by the ratio between the
number of positive samples and yuck responses. This ratio determined the number of
additional frames that were selected within 250ms of the negative sample. Listener
responses that received a multiple number of yuck responses were added as many
times as they were yucked.

8.2.4 Evaluation

Both models were evaluated on the corpus objectively and in an individual percep-
tual evaluation experiment. The individual perceptual evaluaton experiment was per-
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Phase Training Set # of interactions Evaluation Set # of interactions
Bootstrap Bootstrap set 1 Set 1 1
Iteration 1 Set 1 1 Set 2 2
Iteration 2 Sets 1, 2 3 Set 3 3
Iteration 3 Sets 1, 2, 3 6 Set 4 6
Iteration 4 Sets 1, 2, 3, 4 12 Test set 6

Table 8.1: Overview of the sets used in each iteration and each phase of the IPL process.

formed in one bootstrap phase, followed by four iterations. In each phase the data
set on which the models were trained and evaluated was increased.

Procedure

The experiment consisted of five phases. It started with a bootstrap phase, followed
by four iterations in which the IPL model was built. In the bootstrap phase, a baseline
model was learned on a single interaction. This model was then evaluated perceptu-
ally on one other interaction to obtain the first set of negative samples.

In the following four iterations the positive and negative samples obtained from
the previous evaluation sets were used as training set for the IPL model. Given that
the negative samples were selected at random in the bootstrap phase, all samples of
this phase were discarded for the first iteration. Since the evaluation results for the
IPL model doubled as negative samples for model learning, there were more positive
and negative samples available to learn the IPL model in each subsequent iteration.
In addition, a larger set of interactions was used for each iteration. An overview of
the number of interactions used for learning and evaluation is given in Table 8.1.

To compare the performance of the IPL model a baseline model was trained for
each iteration as well. This model was trained on the same interactions according
to Table 8.1, but with negative samples selected randomly without overlapping with
positive samples. A fair comparison can be made, since both models were trained on
the same interactions and rated by the same participants. Beside the evaluation sets,
the models were also evaluated on a test set of six interactions that was never used
for training.

Participants of the experiment were shown stimuli through a webpage. It was ex-
plained to them that they would be participating in an experiment to determine the
quality of synthesized listening behavior. After entering their name, gender and age,
the participants were presented a set of (at most) 6 stimuli. They were asked to press
the spacebar each time the virtual listener performed a backchannel they judged as
inappropriate (a yuck response). Participants could replay the stimulus from the start,
which would discard all previously issued yuck responses for that stimulus. Each par-
ticipant was shown the same interaction twice: once with the virtual listener based
on IPL, once based on the baseline model. The order of the stimuli was varied system-
atically. The within-subject design allowed us to evaluate the difference between the
two models pair-wise. This is essential as there are typically differences in the number
of yucks between participants. An experiment session lasted around 30 minutes.
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Figure 8.2: Screenshot of one of the stimuli used in the perception study. The participants were
presented with a speaker (on the left) and a generated listener (on the right).

Stimuli

Participants of the experiment were shown a video of a speaker from the MultiLis
corpus side-by-side with an animated listener, see Figure 8.2. The virtual listener
nodded her head when the synthesis model predicted a listener response. Other be-
haviors such as head movement, posture shifts, facial expressions and eye blinks were
not animated to prevent these factors from contributing to the perception. As a result,
the synthesized listening behavior was completely controlled, but rather minimal. For
each interaction in a set we created an animation of the virtual listener based on the
IPL model and a virtual listener based on the baseline model. The mean duration
of a stimulus video was approximately four minutes, depending on the interaction
between the actual speaker and listener in the corpus.

Each stimulus video was generated using the Elckerlyc platform [142] to syn-
thesize head nods as listener responses for the listener at the timings predicted by
the trained SVM models. To control for the number of listener responses, the mean
listener response rate over all interactions in the corpus was used, which is approx-
imately 7.7 per minute. To collect more negative samples to be used in subsequent
iterations the response rate was increased an extra 25% to 9.6 listener responses per
minute. For both the baseline and IPL models the fixed threshold for the peak se-
lection was such that the listener response rate was matched in each stimulus video.
The only restriction applied was that two listener responses could not be within two
seconds of each other.

Participants

Each stimulus was rated by five participants. To limit the time commitment of the task,
set four and the test set were split in two, since these sets contained six interactions
(12 stimuli). Including the evaluation on the test set for iterations 1 to 4, this gave
us 13 groups of stimuli. In total 65 participants were required to rate the stimuli, 25
for the evaluation of sets 1 to 4 and 40 for the evaluation of the test sets. Participants
were recruited among colleagues and students. Several persons participated more
than once, each time on a different set. As a within-subjects design was used, this
does not bias the comparison between the models. Of the 65 trials, 8 were completed
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Figure 8.3: The performance of both the baseline and IPL model on the objective measure (left)
and subjective measure (right). It shows that on the objective measure the models perform the
same, but on the subjective measure there is a preference for the IPL model.

by females and 57 by males (mean age 28, min. 18, max. 47).

Evaluation Measures

The performance of the baseline and IPL models were compared on both objective
and subjective measures.

• Objective measure - For the objective measure, the predicted timing of the
listener responses were compared with the listener responses performed by the
displayed listener in the MultiLis corpus. A listener response was regarded as
correctly predicted if it was timed within 500ms (before or after) a listener
response produced in the corpus. The precision p and recall r were calculated.
Precision is the number of matches amongst all predicted signals, recall is the
amount of matches amongst all relevant instances in the corpus. Precision and
recall were combined in the F1 measure by taking the weighted harmonic mean
of the two.

• Subjective measure - For the subjective measure the yuck responses collected
in the perceptual evaluation were used. The percentage of listener responses
that did not receive any yucks was calculated, as well as the average number of
yuck responses per listener response.

Performance on these measures was evaluated at each iteration on both the cur-
rent evaluation set of the iterations and the test set.

8.3 Results and Discussion

The performance of both models on the test set after the final iteration is presented.
In the left graph of Figure 8.3 the performance of both models on the objective F1

measure is presented. Both models perform the same with F1 scores of 0.323.
The subjective measures show a slightly different effect. In total, 239 listener

responses were generated with each of the models. The number of yuck responses
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Figure 8.4: Frequency histogram for number of yuck responses per synthesized listener re-
sponses on the test set, for baseline and IPL models after iteration four.

obtained from five participants per stimulus is lower for IPL than for the baseline
(219 and 238, respectively). A pair-wise t-test for the number of yuck responses per
stimulus shows a marginally significant difference between the two models (t(5) =
-1.516, p = 0.09). On average, a listener response synthesized with IPL received 0.92
yuck responses from five participants, whereas this number was 1.0 for a listener
response generated from the baseline model. A breakdown of the number of yucks
per listener response is given in Figure 8.4. Most of the generated listener responses
received a modest number of yuck responses.

The number of listener responses that did not receive any yucks is higher for the
IPL model, 149 (62.3%) compared to 137 (57.3%) for the baseline model (see also
Figure 8.3). In conclusion, both models generate behavior that approximates that of
the listener in the corpus in terms of co-occurring listener responses, but the behavior
generated based on the IPL model is perceived as slightly more natural.

8.4 Conclusion

In this chapter the Iterative Perceptual Learning approach was presented. IPL takes
an active learning approach to develop the listener response prediction model. The
approach uses the individual perceptual evaluation method to collect subjective rat-
ings from human observers of the predictions made by the model. By iteratively using
these subjective ratings as negative samples for the next model, the models become
more attuned to the behavior that is perceived as appropriate by human observers.

The merits of the approach were demonstrated by comparing the performance
of the IPL model to a baseline model where negative samples are randomly selected
at moments that do not overlap with the positive samples. In this comparison both
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models performed the same when compared to the original listening behavior found
in the MultiLis corpus, but the IPL model received fewer yuck responses in total and
the number of individual responses that were found to be appropriate by all five
human observers was also in favor of the IPL model.



9
Speaker-Adaptive Learning

Having a conversation requires complex coordination between the interlocutors. This
coordination occurs in all modalities of behavior. The content of the speech is chosen
such that a coherent conversation unfolds. During the conversation the nonverbal
behaviors are also utilized to regulate turn-taking, emphasize important parts of the
interaction and establish rapport with the interlocutors. It is a constant back and
forth where actions are chosen depending on the actions taken by the other inter-
locutor(s). The adaptation towards the other interlocutor(s) shows in their speech
through changing voice levels, utterance frequency and pauses [64], as well as visual
behaviors such as postures, facial expressions and other gestures [32].

This collaborative coordination is not only limited to speaking behavior, but can
be found in listening behavior as well [7]. Listener responses are placed at specific
places in the discourse. Oftentimes the speaker cues these places and expects a lis-
tener to respond [63]. The absence of the expected listening behavior at such places
can result in restarts (and often rephrases) from the speaker [56]. This affects the flu-
ency of the conversation, which in turn affects speaker clarity and ultimately speaker
comprehension [93, 7]. It has also been proven to hurt the rapport between inter-
locutors [62].

So far, researchers have focussed on building a prediction model that generalizes
all speakers and listeners into one model. The thought process behind this devel-
opment strategy is that the machine learning techniques pick up on the similarities
between the speakers and produce a model that works well in most cases. By do-
ing this individuality in behavior is ignored. The previous models in this thesis have
focussed on making the generalization models as inclusive as possible by collecting
multiple perspectives on appropriate and inappropriate listening behavior.

In this chapter the focus is on developing a model that explicitly models the dif-
ferences in behavior. Specifically it adapts to the speaking style of the interlocutor
the model is responding to. The approach aims to solve the following issue with the
generalization models. An often used feature in listener response prediction models
is eye gaze. However, not every person is as comfortable with looking other people
in the eye during conversations as others and will do this less often. Therefore, the
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model will probably not perform as well for this speaker, when a prediction model is
heavily dependent on this cue. If the cue never comes the model will not predict a
listener response as often as desired.

In this chapter a speaker-adaptive listener response prediction model will be pre-
sented that does not ignore the individuality of the interlocutors. It adapts to the
behavior of the speaker. Our speaker-adaptive model is created from of a collection
of dyadic speaker-listener interactions. Our prediction model identifies a subset of
prototypical speakers and creates prediction models for each of them. When encoun-
tering a new speaker our model analyzes the characteristics of the speaker and selects
the prediction model that reflects similarities with our prototypical speakers. A key
challenge in our approach is to find a representation of the speaker behaviors that
highlights the differences between prototypical styles. This representation will be
called ”speaker descriptors” and it will be a central component used to match new
speakers with their closest prototype.

An extensive set of experiments on the MultiLis corpus will be presented and a
comparison will be made between our approach and previously published models on
the same dataset. Besides the merits of speaker-adaptation our experiment highlights
the importance of using multimodal speaker descriptors when comparing speakers to
select the right model from the collection.

The chapter will continue in Section 9.1 with a more detail description of the ap-
proach to the speaker-adaptive listener response prediction model. The experiment
to evaluate the proposed model will be presented in Section 9.2. The results of this
experiment will be presented and discussed in Section 9.3. The chapter will be con-
cluded future directions for the work will be presented in Section 9.4.

9.1 Speaker-Adaptive Learning

The core of our speaker-adaptive prediction model is the model collection. The model
collection consists of a collection of listener response prediction models that represent
the variability in speaking styles found in the corpus the model is learned on. How
the prediction models in the model collection represents the variability in speaking
style will be described in more detail in section 9.1.2. The model collection is built
during an offline learning phase and used in the online prediction phase to adapt to
the speaker.

In Figure 9.1 the two phases of developing and using our speaker-adaptive model
are illustrated. In the top half of the figure the offline learning phase is depicted.
From each speaker and listener pair in the corpus a prediction model is learned. Each
model learns the mapping between the features that are extracted from the audio
and video signal of the speaker and the ground truth labels that represent the times
at which the listener has given a listener response in the corpus. Each prediction
model is accompanied by the speaker descriptors that describe the overall behavior of
the speaker the model is learned on. Section 9.1.1 will discuss this issue.

In the bottom half of the figure the online prediction is depicted. The models that
are learned in the offline phase and the associated speaker descriptors are collected
in the model collection. When the speaker-adaptive prediction model encounters a
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Figure 9.1: The figure illustrates the learning and usage of our speaker-adaptive prediction model.
In the top half the offline learning phase is depicted. In this phase the prediction models are
inferred from individual speaker-listener pairs and each model is placed in the model collection
with their associated speaker descriptors. During the online prediction phase (bottom half of the
figure) the speaker descriptors from the new speaker are compared to all speaker descriptors
in the model collection. The model of the nearest neighbor match is selected to predict listener
responses for the new speaker.

new speaker, it calculates the speaker descriptors for this speaker. These new speaker
descriptors are compared to all speaker descriptors in the model collection. When the
nearest neighbor is found, based on the speaker descriptors, the associated prediction
model is selected to predict the listener responses for the new speaker. The model
is applied to the extracted features of the new speaker which results in a prediction
value curve with the probability of a listener response at each time frame.

9.1.1 Speaker Descriptors

One of the novel challenges the speaker-adaptive listener response prediction model
introduces is the challenge of finding a similar speaker based on multimodal features.
A closely related challenge is speaker diarization, where a group of speakers need
to be discriminized into individual speakers [139]. However, our challenge is not
finding the exact same speaker among others, but finding a speaker with a similar
speaker style that cues the moments where he/she expects a listener response in a
similar way. Little is known about how speakers differ in cueing listener response
opportunities. Similar to the development of listener prediction models, conversation
analysis literature has also focussed on findings by pooling all speaker and listener
pairs from the corpus together and finding similarities.
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In conversation analysis literature features that are often found to be associ-
ated with listener response opportunities include the pitch [89, 153, 63] and en-
ergy [89, 63] of the speech signal, pauses in speech [40, 28] and the eye gaze of
the speaker [86, 6, 8]. Therefore, it is to be expected that differences lie in these
same features. Thus, our focus for the speaker descriptors was directed towards these
features.

Each speaker descriptor summarizes the behavior of the speaker during the whole
interaction for a certain feature in a single value. For features that are a continuous
signal (for instance of pitch and energy) the speaker descriptors that are used are the
mean and standard deviation of the signal. For binary features (for instance speech
segments and eye gaze) the speaker descriptors that are used are percentage of true
values and number of segments per minute.

To select a prediction model the speaker descriptors are compared to all speaker
descriptors in the model collection. There are many ways to compare two vectors and
find the closest match. We chose nearest-neighbor measured by Euclidean distance
for our model. The results presented in Section 9.3 will show that speaker adapta-
tion on these basic speaker descriptors and straightforward nearest neighbor selection
will improve prediction performances compared to the a state-of-the-art CRF model
without speaker adaptation.

9.1.2 Model Collection Composition

As stated before the speaker descriptors are used to select a model from the model
collection. Each prediction model in the model collection represents a different speak-
ing style. However, not every model trained on a speaker is suited for inclusion into
the model collection. The composition of the model collection is a balancing act be-
tween 1) the quality of the individual prediction model and 2) the contribution to the
representation of variability in speaking style. In other words, the goal of the model
collection is to have a representative model for as many different speakers as possible.

This does not necessarily mean that adding as many individual models as possible
to the model collection improves the performance of the speaker-adaptive prediction
model. If the model collection already includes a good prediction model for a similar
speaker, it is better to use that model as a representative for the speaker, than an
inferior model. Therefore, models included in the model collection are selected based
on their individual performance, while controlling for representation of the variability
in speaking style.

9.2 Experimental Setup

In this section we will report the experiment that has been conducted. The goals of
our experiments were to (1) compare our speaker-adaptive approach with a priori
state-of-the-art approaches, and (2) study the effect of modalities with our speaker
descriptors.

The section will be started with a description of the MultiLis corpus that is used for
learning and evaluating the models. This will be followed by the details of learning
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the models. After this, the details of the model selection in the user-adaptive learning
approach will be described. Finally, the details of the evaluation will be presented.

9.2.1 Corpus

Again the MultiLis corpus presented in Chapter 2.1 was used. However, instead of
using all listeners only the displayed listener was used. This decision was made to
prove that the approach can work on any corpus and not only on a corpus with the
unique characteristics of the MultiLis corpus. The total number of listener responses
that were used as ground truth labels in the experiments was 886.

9.2.2 Model Learning

The machine learning models trained in our experiments were Conditional Random
Fields (CRF) [95] and they were trained using the hCRF library [1]. CRF is a prob-
abilistic discriminative model for sequential data labeling. A CRF learns a mapping
between a sequence of observations, in this case the learning features describing the
behavior of the speaker, and a sequence of ground truth labels, in this case the on-
sets of listener responses from the MultiLis corpus as positive samples and the same
number of randomly selected moments where no listener response occured as nega-
tive samples. The learned model returns a prediction value curve with a value at each
frame indicating the probability of a listener response. After smoothing the prediction
value curve can be used to predict listener responses by detecting peaks in the curve.
By comparing the heights of these peaks to a threshold the most probable moments
are selected as predicted response opportunities.

In this experiment two models were compared, the baseline model and a model
using the technique explained in Section 9.1. For this technique several individual
models were learned. The baseline and individual models were learned as follows:

• State-of-the-art CRF Model - Thirty-two state-of-the-art CRF models were learned.
Each of these models was learned using 31 interactions from the MultiLis cor-
pus as learning data and the remaining interaction as test data. This model was
similar to the model of Morency et al. [108].

• Individual Models - Thirty-two individual models were learned. Each of these
models was learned using one interaction from the MultiLis corpus as learning
data and the remaining 31 interactions as test data. A subset of these indi-
vidual models were selected for the model collection of our speaker-adaptive
multimodal prediction model (see Section 9.2.4).

All models were learned on the learning features. These features described the
behavior of the speaker on a frame by frame basis at a frequency of 25 Hz. There
were six features, of which four were acoustic features, one was a turn-taking feature
and one a visual feature. These features were:

• Pitch - The raw pitch values were extracted using the algorithm of Drugman
and Alwan [42] at a sampling rate of 100 Hz. Gaps in detected pitch smaller
than 80 ms (8 frames) were linearly interpolated, following [153]. Then all
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pitch values were converted to their z-score equivalent. Afterwards the feature
was downsampled to 25Hz.

• Pitch Slope - As a measurement of the change of the pitch the slope of the pitch
value feature was calculated by taking the first derivative of the pitch signal.

• Energy - The energy of each speech frame was calculated on 32 ms Hanning
windows with a shift of 10 ms and expressed in dB.

• Energy Slope - As a measurement of the change in speech intensity the slope
of the energy value feature was calculated by taking the first derivative of the
energy signal.

• Speech Segment - The speech segment feature captured whether the speaker
was speaking at the moment or not. It was represented as a binary feature. The
feature was extracted using the segmentation from the Dutch automatic speech
recognizer SHoUT [81]. The minimum pause between speech segments was
100ms (4 frames), otherwise speech segments were concatenated

• Gaze - The gaze was represented as a binary feature that was true when the
speaker looked directly at the listener. The feature was extracted from the an-
notations provided in the MultiLis corpus.

9.2.3 Speaker Descriptors

Our speaker-adaptive model has a model collection. This model collection includes
the models that are learned from single speaker-listener pairs. A description of the
behavior of the speaker of the pair the model is inferred from is associated with each
model. The behavior is captured in 10 speaker descriptors. The speaker descrip-
tors summarize the behavior of the speaker over the course of the interaction. Our
speaker descriptors include six acoustic features, two turn-taking features and two
gaze features. These are:

• Mean Pitch - The mean of all Pitch values of the interaction. The pitch values
are the values from before converting to the z-score equivalent (otherwise the
mean would always be 0).

• Standard Deviation of Pitch - The standard deviation of all Pitch values of the
interaction. Again using the raw pitch values before converting to the z-score
equivalent (otherwise the mean would always be 1).

• Mean Energy - Mean of all Energy values of the interaction expressed in dB.

• Standard Deviation of Energy - Standard deviation of all Energy values of the
interaction.

• Mean Energy Slope - Mean of all Energy Slope values of the interaction.

• Standard Deviation of Energy Slope - Standard deviation of all Energy Slope
values of the interaction.
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• Percentage of Speech - The percentage of time the speaker is speaking.

• Speech Segments per Minute - The number of speech segments per minute.

• Percentage of Gaze - The percentage of time the speaker is looking at the
listener.

• Gaze Shifts per Minute - The number of gaze shifts per minute.

When presented with a new speaker our speaker-adaptive model calculates the
speaker descriptors for the new speaker and compares them to the speaker descriptors
found in the model collection. It selects the model whose speaker descriptors are the
nearest neighbor match as measured by the Euclidean distance.

9.2.4 Model Collection Composition

As previously stated the composition of the model collection is a balancing act be-
tween 1) the quality of the individual prediction model and 2) the contribution to the
representation of variability in speaking style. The composition of the model collec-
tion is based on the performance of the individual models. To find the optimal model
collection the number of models included in the model collection was varied from
N=1 to N=31. With each collection size the top N models were selected based on
individual performance.

Afterwards the representation of variability was controlled for by placing each
speaker in the 2D space drawn up by the first two principal components of the speaker
descriptors.

9.2.5 Evaluation

The models are evaluated by comparing the prediction made by the model to the
listener responses found in the MultiLis corpus.

Predictions are made by selecting the peaks from the prediction value curve that
exceed a certain threshold. Usually, for example [108, 117], this threshold is de-
termined on the learning set during a validation phase. However, this method for
determining the threshold is unreliable. For some models the threshold is set too low,
resulting in too many predictions, while for others the threshold is set too high, re-
sulting in no predictions. Especially, our learning set is very limited for the individual
models which makes the validated threshold unreliable. To not be dependent on this,
the threshold is optimized such that it gives us the optimal performance on each in-
teraction during testing. This is done for all models. See Chapter 10 for more details
on this and an alternative solution.

Again, performance is measured using the F1 measure. This measure is the
weighted harmonic mean of precision and recall. A prediction is considered a true
positive if it is made within 500 ms from the onset of a listener response found in the
MultiLis corpus. The performances of the models in the same conditions are averaged.
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Figure 9.2: The figure illustrates the performance of the models included in the experiment. The
model proposed in this chapter is represented in red and the models it is compared to in black. The
figure illustrates that our speaker-adaptive model performs best with a performance of 0,364. The
difference between our speaker-adaptive model and the state-of-the-art CRF model is significant
(t(31) = 3.25, p = 0.001).

9.3 Results and Discussion

In this section the results of the experiments will be presented. The section will
start with presentation of the increase in performance our speaker-adaptive multi-
modal listener response prediction model achieves over the state-of-the-art CRF model
in Section 9.3.1. This will be followed by an analysis of the importance of the model
collection composition 9.3.2. Finally, the importance of multimodality of the speaker
descriptors will be analyzed in Section 9.3.3.

9.3.1 Speaker-Adaptation

The performances of the models in question are presented in Figure 9.2. In this
figure the performances are represented in red for the models proposed in this chapter
and in black for the comparison models.

The performance of our speaker-adaptive listener responses prediction model is an
F1 score of 0.364 (fourth bar in Figure 9.2). This is better than average performance
of the state-of-the-art CRF model, which has a performance of a F1 score of 0.333
(first bar in Figure 9.2). This difference is significant, t(31) = 3.25, p = 0.001.

Our speaker-adaptive model has a model collection of individual models. The
average performance of these individual models is an F1 score of 0.280 (second bar
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Figure 9.3: The figure illustrates two points. First, the maximum performance is achieved by in-
cluding the top 4 performing models in the model collection with a performance of 0.364. Second,
the figure illustrates the importance of the multimodality in comparing speakers. The multimodal
nearest neighbor selection (solid red line) almost always outperforms the unimodal nearest neigh-
bor selection.

in Figure 9.2). The best individual model performs at an F1 score of 0.348. The
model collection of our best speaker-adaptive model includes four the top 4 individual
models (see for more details on the selection process Section 9.3.2). The average
performance of these four top 4 individual models is 0.342. A state-of-the art CRF
model that is learned using the top 4 four interactions that are used as learning data
for these individual models performs at an F1 score of 0.341 (third bar in Figure 9.2).
The fact that our speaker-adaptive model performs better than this model proves that
the speaker adaptation accounts for most of the performance boost and not only the
characteristics of the learning data.

9.3.2 Model Collection Composition

As previously stated the composition of the model collection is a balancing act
between 1) the quality of the individual prediction model and 2) the contribution to
the representation of variability in speaking style. In this section the importance of
the composition of the model will be analyzed in more detail.

To find the optimal model collection the number of models included in the model
collection was varied from N=1 to N=31. The composition of the model collection
was determined by selecting the top N individual models based on the mean perfor-
mance as measured by the F1 score. In Figure 9.3 the results of varying the number
of models in the model collection is presented by the solid red line. The other lines
will be discussed in Section 9.3.3.
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Figure 9.4: The figure places each speaker in the 2D space created by the first two principal
components of the speaker descriptors. The figure illustrates that the four models that are selected
for the model collection (red) are good representatives of the diversity found in the speakers, since
they are spread out over the 2D space.

The figure illustrates the maximum performance achieved when the top 4 models
are included in the model collection. At this number of models the performance
peaks at 0.364 (right bar in Figure 9.2). The speaker-adaptive model that includes
all individual models in the model collection gives a performance of a F1 score 0.323.
This is worse than both the state-of-the-art CRF model and the best individual model.
The inclusion of some of the individual models hurts our performance. These results
highlight the importance of the composition of the model collection.

Limiting the model collection to only the top 4 models might have caused the
model collection to be less representative of the variability in speaking styles than
desired. The idea behind the model collection is to have a close match for any new
speaker the model may encounter. However, since the models included in the model
collection are purely selected on their performance, the top 4 models might actually
be close neighbors to each other in the speaker descriptors space. To analyze this
a principal component analysis was made on the speaker descriptors. The first two
principal components, which account for 96,2% of the variability, are selected and
each speaker is placed in the 2D space that these components create. The results of
this analysis are presented in Figure 9.4.

In this figure the four speakers that were selected for the model collection are
plotted in red and the remaining 28 speakers in black. The figure illustrates that the
four speakers are well spread out over the 2D space. Thus, the models are a good
representative of the variability in speaking styles found in the MultiLis corpus.

9.3.3 Multimodal Speaker Descriptors
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Finally, an analysis was made of the importance of the multimodality of our
speaker descriptors. A comparison was made between multimodal speaker descriptors
and unimodal speaker descriptors of the three modalities (acoustic, visual and turn-
taking). The comparisons were made on the speaker-adaptive models with varying
model collection compositions developed for the previous analysis in Section 9.3.2.
The results are presented in Figure 9.3.

Our speaker-adaptive listener response prediction model with multimodal speaker
descriptors is represented by the solid red line. For almost all model collection compo-
sitions the multimodal speaker descriptors outperform the unimodal speaker descrip-
tors. For the best models the acoustic speaker descriptors (solid back line) contribute
the most to the performance. However, it is actually the turn-taking speaker descrip-
tors that outperform the multimodal speaker descriptors for some model collection
compositions (N=18, 19 and 21).

9.4 Conclusion

In this chapter a speaker-adaptive model for predicting listener responses was pre-
sented. This speaker-adaptive model consists of a collection of listener response pre-
diction models that are trained on single interlocutor pairs. The composition of this
model collection represents the variability found in speaker styles found in the corpus
as measured by the speaker descriptors. When encountering a new speaker the model
compares the speaker descriptors of this speaker to all the speaker descriptors in the
model collection. The model that is learned on the closest matching speaker is used
to predict listener response opportunities for the new speaker.

As reported in Section 9.3 the performance of this model was compared to a state-
of-the-art CRF model. Our approach proved to outperform the state-of-the-art ap-
proach as measured by the F1 measure (0.333 for the baseline model versus 0.364
for our speaker-adaptive model). Experiments showed that the speaker-adaptation,
the composition of the model collection and the multimodality of the speaker descrip-
tors are all important factors contributing to the performance of our approach.

The presented model opens exciting new avenues for future research. Matching
speakers whose speaking styles are similar is a new challenge. Now that the potential
of the speaker descriptors is proven, many other speaker descriptors can be consid-
ered. For instance, it is known in literature that listener responses are usually placed
around the end of a grammatical clause or sentence. Speaker descriptors describing
the behavior around these moments may be helpful in finding the right match.

Another interesting avenue for future research is in improving the development
of the individual models included in the model collection. In the present study all
individual models use the same features as input. However, since not every speaker
uses the same cues to elicit listener response opportunities, not every feature will be
helpful for each model. Feature selection for each individual model could potentially
make the individual models stronger and in turn the speaker-adaptive model as a
whole.
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10
Interpreting the Prediction Value Curve

The goal for developing listener response prediction models is applying them in em-
bodied conversational agents to generate appropriate listening behavior. However,
during the training and testing these models are often optimized to perform another
task, namely matching the ground truth labels found in the corpus as closely as pos-
sible. The assumption here is that if we can match the ground truth labels as closely
as possible the behavior of the embodied conversational agent will be as good as it
can be. But for integrating such models into embodied conversational agents other
factors play a role as well.

When designing a conversational embodied agent the designers usually have a
personality or role in mind they want their agent to fulfill. A lot of factors are im-
portant when managing the impression a user has about the personality of an agent,
one of which is their listening behavior. The timing, amount and form of the listener
responses that are produced by an embodied conversational agent have been proven
to influence the impression the user has about their personality [38].

Therefore, it is important that the produced listening behavior is consistent with
the targeted personality of your embodied conversational agent and is so under every
circumstance and for every user. In other words, it is important that the listening
behavior that an embodied conversational agent performs is stable, recognizable and
conform the expectations the user and designer have of the behavior.

This is typically not provided by the current state-of-the-art models for generat-
ing generic listener responses. Changes in conditions, such as different interlocutors
with different voice characteristics and speaking styles, can have a big impact on the
features used as input by these models, which in turn can have a big impact on the
predictions made by the models. In this chapter we will propose a technique to make
the transition from a corpus based model to a model that is useful for integration into
an embodied conversational agent. The technique will focus on a novel way to inter-
pret the prediction value curve that is the output of the listener response prediction
models.

All listener response prediction models trained in the previous chapters produce a
prediction value indicating the likelihood of a listener response occuring at each time
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Figure 10.1: The prediction value curves of the parallel listener consensus model applied to the
first minute of two interactions. On the horizontal axis time is presented in seconds and on the
vertical axis the likelihood of a listener response according to the model is presented. The gray
horizontal line is the validated threshold obtained during the validation step.

frame. After sequencing and smoothing these prediction values one gets a prediction
value curve. In Figure 10.1 two example prediction value curves are presented, plot-
ted in black. These examples were taken from the first minute of two interactions
from the MultiLis corpus and produced by the “Consensus 2” model from Chapter 7.

The timing predictions for listener responses were be extracted from these predic-
tion value curves. This was done by detecting peaks in the prediction value curve and
comparing these peaks to a fixed threshold. If this peak exceeded this fixed thresh-
old, it was considered appropriate to give a listener response at the time of the peak.
The fixed threshold was determined in the validation phase of the development of
the model. This threshold can be decreased or increased to generate more or fewer
responses respectively to express more attention or a different personality type. In
Figure 10.1 the threshold that was found to give the highest F1 score for the “Con-
sensus 2” model is indicated by the horizontal line at 0.2122.

This is the way that other probabilistic models determined their timings as well [107,
79, 116]. In this Chapter a new approach to select the predictions from the pre-
diction value curve will be presented. In Section 10.1 the limitations of the fixed
threshold will be discussed. Our dynamic thresholding approach will be presented in
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Section 10.2. The new dynamic thresholding approach will introduce a new problem
which will be addressed in Section 10.3. The approaches will be evaluated objectively
on the MultiLis corpus in Section 10.4 and using the individual perceptual evaluation
method in Section 10.5.

10.1 Limitations of the Fixed Threshold

Selecting suitable moments in the prediction value curve for prediction using a fixed
threshold has a problem. The number of listener responses predicted by the model
using a certain threshold is inconsistent. The same model using the same thresh-
old applied to two different speakers can result in a significant variation in listener
response rate. This is problematic for the designer of an embodied conversational
agent. The designer usually has a personality or role in mind for their agent. A lot of
factors are important when managing the impression a user has about the personal-
ity of an agent. One of these factors is their listening behavior. The timing, number
and form of the listener responses that are produced by an embodied conversational
agent have been proven to influence the impression the user has about their person-
ality [38]. So, the stability of the generated behavior is important.

That this stability is not provided by the current fixed threshold is illustrated by
the two prediction value curves in Figure 10.1. Looking at the number of peaks
that exceed the threshold shows that applying the optimal threshold according to
the validation step has resulted in a big difference in response rate. For the first
interaction nineteen listener responses are predicted in the first minute, while only
one is predicted for the second interaction. The explanation for the lower prediction
values in the bottom curve in Figure 10.1 lies in the fact that in this case the speaker
hardly ever looked at the listener whilst gaze is one of the most important cues that
the prediction model uses. Even though the speaker does not often look at the listener,
opportunities to give a listener response are available, since the listeners in the corpus
did respond during this minute. So, it might be in the interest of the virtual listener
to give a listener response as well. Either to comfort and encourage the speaker to
continue speaking and/or to build a better rapport with the speaker.

With a fixed threshold this is hard to do, since there is no reliable way of knowing
how much one needs to lower the threshold to get the desired response rate. This is
because selecting peaks based on a fixed validated threshold is subject to changing
conditions. These changing conditions do not limit themselves to eye gaze behavior
as in the previous example. Other aspects of a speaking style can also change. Exam-
ples include, but are not limited to speaking in a louder or softer voice, with higher
or lower pitch, different speech rates or varying degrees in which intonation is used.
These aspects can even change during an interaction with the same speaker, not nec-
essarily because the speakers changes these characteristics of their speaking style, but
they may also change their position relative to the microphone or video camera. All
these things can influence the features used by the model, which in turn influence the
prediction values returned by the model. For some conditions the general prediction
value from a model will always be lower than for other conditions and the peaks in
this curve may remain below the fixed validated threshold.
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Figure 10.2: The proposed dynamic threshold is shown in red. The threshold starts initially high
and decreases over time at an increasing rate until a peak exceeds the threshold. Then the
threshold is increased by a fixed amount after which the threshold starts decreasing slowly again.

Essentially, these differing conditions make it very difficult for a designer of an
embodied conversational agent to give the agent the personality and behavior they
have in mind. For one user the agent may be responsive and attentive, while for
another almost no listener responses are generated at all.

So, another way of extracting the appropriate timings of listener responses from
the prediction value curves is needed. To give the designer of the nonverbal listening
behavior of a virtual agent the tools to control the generated behavior, the solution
needs to ensure the following characteristics:

• Stable Response Rate - The solution should be able to generate a similar re-
sponse rate under changing conditions, such as different speakers, audio/video
quality or feature extraction accuracy.

• Evenly Distributed Responses - Not only the overall rate should be stable, but
the distribution needs to be even as well. Periods with many or few responses
are perceived as unnatural behavior [123].

• Adjustable Response Rate - The response rate needs to be easily adjustable, so
the designer of the agent can generate the desired behavior and even change
this behavior during the interaction.
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10.2 Dynamic Thresholding

The proposed approach changes the threshold dynamically during the interaction. So,
instead of a fixed threshold determined at the development stage of the prediction
model, a dynamic threshold is used that changes over time depending on the time
since the last predicted listener response was proposed. At the start of the listening
period the threshold is relatively high and it starts decreasing at an increasing rate
until a peak in the curve exceeds the threshold. When a listener response is predicted
the threshold jumps up and starts decreasing again at an initially slow rate. This will
ensure both the stable response rate and the even distribution of the responses.

In Figure 10.2 the dynamic threshold for the two interactions is shown in red. By
looking at the peaks that exceed the red threshold, the figure shows that for both
example interactions the number of predicted response opportunities is nine. So, the
resulting response rate is much more stable than the response rate the fixed thresh-
old would have given, meaning we have met our first required characteristic. The
responses are also more evenly distributed. There are no long periods without re-
sponses, the longest gap being 14 seconds. There are still issues with two or three
consecutive predicted response opportunities, but an extra rule stating no two listener
responses to be generated within a certain amount of time would solve this. For the
final required characteristic a closer look at the formula that created this dynamic
threshold is required.

Tt = Ttlast + j − (
t− tlast
g.r

)2.
j

d
(10.1)

The formula that created the dynamic thresholds in red in Figure 10.2 is presented
in Equation 10.1. It calculates the dynamic threshold (T ) at time t. Time t is measured
in frames. Gap parameter g is the mean time in seconds between two predicted
listener responses. Parameter r is the sampling rate of the system, needed to convert
timing in seconds into timing in frames. Parameter tlast is the time of the listener
response that was last generated and Ttlast is the dynamic threshold at that time.
Parameter j is the jump parameter, which represents the amount that the dynamic
threshold increases after predicting a listener response. The final parameter d is the
drop off parameter, which controls the amount the dynamic thresholds decreases over
time.

Gap parameter g is the parameter that will give the designer of the agent control
over the response rate of the agent by defining the mean gap between two predicted
listener responses. However, before this gap parameter will give the expected behav-
ior, the jump parameter j and drop off parameter d need to be determined. For the
jump parameter j we recommend using the standard deviation of the prediction value
curve as value. This will make the jumps after predicting a listener response appro-
priate to the variation found in the prediction value curve and thus make the dynamic
threshold even more adaptable to differing conditions. That leaves the drop off pa-
rameter and this needs to be calibrated on a development set of example interactions.
The procedure for this is to try different combinations of parameter d and g and min-
imize the absolute difference in expected number of listener responses and predicted
number of listener responses for the values of g you expect the virtual listener to use.
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10.3 Variable Head Nods

The application of the dynamic threshold comes with a cost though. The dynamic
threshold forces a certain response rate on an interaction. To uphold the requested
response rate, some of the peaks that get selected by the declining threshold have a
low(er) prediction value and are thus less likely to be good places to give a listener
response. There are several ways one could deal with this. For instance, one could
introduce another threshold below which no listener responses should be generated.
Here another possibility involving a change in the type of response that is generated
is explored.

Since the model is less confident about the correct timing of these listener re-
sponses, it will possibly be better to make them less noticable. This listener response
will most likely be interpreted more as a signal of attention instead of an acknowl-
edgment of given information and correct timing of such signals is less essential. So,
even if the smaller listener response is not timed correctly, the interaction is unlikely
to break down from it.

To achieve this, the height of the peak in the prediction value curve is used as
measure for the amplitude of the generated head nod. So, instead of generating the
same head nod at each predicted response opportunity, a head nod with a larger
amplitude is generated when the peak in the prediction value curve is high and one
with a smaller amplitude when the peak in the prediction value curve is low.

10.4 Objective Evaluation

In Section 10.2 the dynamic threshold formula was presented and its merits were
highlighted on two segments of one minute. In this section the performance of the
dynamic threshold over a larger sample size will be evaluated. The procedure of this
evaluation will be explained in Section 10.4.1.

To support the dynamic thresholding formula and the choice to generate variable
head nods based on the height of the peaks, the evaluation will aim to give answers
to the following questions: Does the dynamic threshold succeed in stabilizing the
response rate? Does it avoid periods with few or many responses? Are the lower
peaks that get selected by the dynamic threshold indeed the worst times to give a
listener response?

10.4.1 Procedure

For the evaluation the “Consensus 2” model from Chapter 7 was used. This model
was applied to the ten interactions from the test set from that experiment. Thus, these
interactions were not used in the development of the model. The listener response
prediction model was applied to these ten interactions to obtain the prediction value
curve for each interaction. Then eleven fixed and eleven dynamic thresholds were
applied to these prediction value curves. The fixed thresholds were varied between
0.15 and 0.35.

The eleven dynamic thresholds were selected such that the resulting overall re-
sponse rate was similar to the mean response rate of each of the fixed thresholds.
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Response Rate for Fixed Threshold (responses/minute)
Interaction

Threshold Overall 1 2 3 4 5 6 7 8 9 10
0.15 21.6 19.0 23.8 26.1 21.9 12.9 21.8 24.9 24.2 22.7 21.5
0.17 16.8 15.7 20.2 21.6 17.2 6.4 16.7 22.3 19.2 16.4 16.1
0.19 13.2 13.7 16.2 18.6 12.1 3.0 12.0 18.4 15.5 13.4 13.1
0.21 11.5 12.8 14.8 16.7 11.1 2.0 8.8 15.3 13.0 12.5 11.5
0.23 10.1 11.3 13.3 15.7 10.0 1.5 7.2 14.4 11.3 10.8 10.9
0.25 8.7 9.3 11.5 14.1 8.7 1.0 5.5 13.6 9.8 9.6 8.4
0.27 7.1 7.0 10.4 13.4 8.0 1.0 3.5 11.8 8.2 7.2 6.6
0.29 5.5 4.0 8.6 12.4 6.7 1.0 2.9 10.9 6.3 5.3 4.1
0.31 4.4 3.1 6.1 10.1 5.4 0.7 2.1 10.1 5.3 3.8 3.2
0.33 3.1 2.2 4.3 5.9 4.1 0.7 1.9 8.7 2.8 2.8 2.7
0.35 2.4 1.8 2.5 4.9 3.1 0.5 1.5 6.6 2.3 1.3 2.5

Table 10.1: The table illustrates the effect of different fixed thresholds on the response rate in
responses per minute of a listener response prediction model. The cells are gray shaded for
easier interpretation, with higher response rate being darker. It illustrates that, although increasing
the threshold decreases the overall response rate at a predictable pace, the effects on individual
interactions varies wildly.

Thus, the gap parameter g from the dynamic threshold formula was set such that
the response rate of that threshold was (almost) the same as the mean result rate of
the corresponding fixed threshold. For both the fixed and the dynamic threshold, lis-
tener responses were not allowed to appear within one second of the previous listener
response. These predicted listener responses were discarded.

For the dynamic threshold other parameters beside the gap parameter g needed
to be set as well. For this evaluation the dynamic threshold were initialized with
the mean of the prediction value curve as initial Ttlast and the standard deviation
of the prediction value curve as jump parameter j. To select the value for the drop
off parameter d, several combinations of gap parameter g and drop off paramater d
were tried on the ten interactions. Using this data the value for drop off parameter d
was set such that the difference between the expected number of listener responses
based on the value for gap parameter g and the resulting number of predicted listener
responses was minimized. This was true for value 1.4.

10.4.2 Results

The first question that will be answered is, does the dynamic threshold succeed in
stabilizing the response rate? For this a comparison was made between the response
rates that were the result of applying the eleven fixed and dynamic thresholds on each
interaction. These response rates in responses per minute are presented in Tables 10.1
(fixed thresholds) and Table 10.2 (dynamic thresholds). In the first column the height
of the fixed threshold and the gap parameter g that were varied are presented. A
comparison of the second columns of Table 10.1 and Table 10.2 shows that a similar
overall response rate is predicted by the model by both thresholds.

In the remaining columns the response rates for each interactions are presented.
The cells are shaded gray for easier interpretation, with higher response rate being
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Response Rate for Dynamic Threshold (responses/minute)
Interaction

Gap g Overall 1 2 3 4 5 6 7 8 9 10
2.8 18.1 17.7 19.1 18.6 18.0 17.8 18.4 19.2 17.0 18.5 18.1
3.6 14.8 14.1 14.8 15.4 14.7 14.4 14.6 15.7 14.5 15.1 15.2
4.5 12.1 11.9 12.2 12.4 12.1 11.9 11.9 13.1 12.0 12.1 12.2
5.2 10.6 10.4 10.4 10.8 10.5 10.2 11.0 11.4 10.5 10.8 10.6
5.9 9.5 9.8 9.4 10.1 9.3 8.9 9.3 10.1 9.2 9.8 9.9
6.9 8.4 8.8 8.3 8.5 8.0 7.9 8.3 9.2 8.2 8.7 8.6
8.4 7.0 6.8 7.6 7.5 6.9 6.7 6.7 7.9 6.7 7.4 7.2
10.9 5.7 5.6 5.8 6.2 5.9 5.2 5.5 6.6 5.3 5.7 5.7
13.7 4.7 4.3 4.3 5.2 4.9 4.7 4.5 5.2 4.5 4.9 4.7
19.2 3.6 3.3 4.0 3.6 3.6 3.5 3.4 3.9 3.3 3.8 3.6
25.2 2.9 2.6 3.2 3.1 3.1 3.0 2.8 3.5 2.7 3.2 2.9

Table 10.2: The table illustrates the effect of different gap parameters in the dynamic threshold on
the response rate in responses per minute of a listener response prediction model. The cells are
gray shaded for easier interpretation, with higher response rate being darker. It illustrates that, for
each interaction a similar response rate is generated.

darker. These rates show that for the fixed threshold the response rate of each inter-
action can vary wildly. Especially the predicted response rate for interaction 5 is a lot
lower than for the other interactions, while the predicted response rate for interaction
7 is generally higher. For the dynamic threshold the response rates for each individual
interaction are a lot more stable. Each interaction has more or less the same response
rate. So indeed, the dynamic threshold has succeeded in stabilizing the response rate.

The next question that will be addressed is, does the dynamic threshold avoid pe-
riods with many or few responses? First, we analyzed whether the dynamic threshold
avoids periods with many responses. As a measure for this the number of listener
responses that were discarded by the extra rule that no predicted responses should
be within a second of each other was used. The number of discarded predictions is
presented in Table 10.3 and the left graph in Figure 10.3. They show that this num-
ber is about twice as high in the case of the fixed threshold compared to the dynamic
threshold. So, the dynamic threshold helps to avoid periods with many responses.

To see whether the dynamic threshold helps to avoid periods with few predicted
responses, an analysis of the gaps between two consecutive predicted responses was
performed. As a measure the mean, standard deviation and maximum of these gaps
was used. The results of this analysis are presented in Table 10.3. Comparing columns
µ and max of both thresholds shows that the difference between the mean and max-
imum gap is a lot more stable for the dynamic threshold (see also right graph in
Figure 10.3). This is also reflected in the lower standard deviation for the dynamic
threshold (see middle graph in Figure 10.3). So, it can be concluded that the dynamic
threshold also resulted in a more even distribution of the predicted responses.

Previously in Section 10.3 it was argued that the lower peaks in the prediction
value curves were less likely to be good places for listener responses. Although this is
intuitively correct no proof was provided to support this claim. To demonstrate that
this is indeed the case, an analysis was performed of the peaks that were selected by
the eleven different dynamic thresholds. These peaks were divided into two groups
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Fixed Threshold Dynamic Threshold
Discarded Gap (s) Discarded Gap (s)

Threshold Predictions µ σ max Gap g Predictions µ σ max

0.15 384 2.75 1.85 24.17 2.8 129 3.31 1.41 7.33
0.17 202 3.56 2.93 47.10 3.6 75 4.06 1.89 9.37
0.19 114 4.51 5.12 85.63 4.5 52 4.97 2.53 10.93
0.21 79 5.21 6.06 85.63 5.2 43 5.65 2.98 13.67
0.23 62 5.91 6.68 85.63 5.9 40 6.35 3.42 15.17
0.25 55 6.94 8.25 97.60 6.9 27 7.17 4.09 17.13
0.27 41 8.51 9.60 97.60 8.4 18 8.61 4.95 20.97
0.29 23 11.01 12.48 97.60 10.9 16 10.74 6.79 27.03
0.31 16 13.73 15.56 97.60 13.7 11 13.13 8.30 33.47
0.33 11 19.15 19.77 101.93 19.2 6 17.53 12.13 43.63
0.35 9 22.80 22.61 101.93 25.2 5 21.49 16.11 55.87

Table 10.3: Presentation of the results of the analysis of the gaps between predicted responses
using a fixed threshold and our dynamic threshold.
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Figure 10.3: Three graphs to illustrate that for all thresholds the dynamic thresholding needs
fewer predictions to be removed (left graph), has a lower standard deviation for the gaps between
two consecutive predictions (middle graph) and has a smaller maximum gap between consecutive
predictions (right graph).

and we checked whether a listener response could be found from one of the recorded
listeners in the MultiLis corpus. The two groups were: peaks above the fixed threshold
that results in the best F1-score in the experiments to evaluate the model, namely
0.2122 (see Chapter 7), and peaks below this fixed threshold. For the peaks above the
threshold a listener response could be found for 53% of the peaks (1666 out of 3149),
while for peaks below the threshold this was only true for 15% of the peaks (176 out
of 1156). So, indeed the lower peaks are less likely to be good places for a listener
response and measures to counteract this effect of the dynamic thresholding need to
be taken.

10.5 Subjective Evaluation

So far it was objectively established that dynamic thresholding succeeds in stabilizing
the response rate. But this does not necessarily mean that the generated behavior is
also acceptable for humans. The response rate was stabilized by selecting suboptimal
peaks in the prediction value curve and generating listener responses at those peaks.
The previous evaluation showed that at those suboptimal peaks the listeners in the
MultiLis corpus responded fewer times at those moments than at the higher peaks.
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The question is whether the listener responses generated at these lower peaks influ-
ence the ratings of the listening behavior and whether adjusting the amplitude of the
head nods has a positive effect on this.

To answer these questions a perception experiment was set up in which partic-
ipants were asked to select their preferred listener out of two generated listeners.
The procedure of the experiments will be explained in more detail in Section 10.5.1,
the stimuli in Section 10.5.2. The measures that were used in our evaluations will
be explained in Section 10.5.3. The results will be presented and discussed in Sec-
tion 10.5.4.

10.5.1 Procedure

For the evaluation 17 participants (3 female, mean age 27) were recruited among
colleagues and students. The individual perception evaluation method was used. The
experiment was presented through a webpage. After a short introduction on what
listening behavior is and what the function of the behavior is, the participants watched
four pairs of two interactions between a recorded speaker from the MultiLis corpus
and a generated virtual listener. The participants were shown the same interaction
twice, but each time with a different generated listener. The difference between the
two generated listeners was either the threshold used to determine the number and
timing of the listener responses (twice) or the variation in amplitude of the head nods
based on confidence of the prediction model (twice). To eliminate learning effects on
our results the order of the stimuli were systematically varied between participants.

While watching each interaction, the participants were instructed to pay attention
to the timing of the listener responses and judge each listener response on whether
or not they thought the listener response was appropriately timed. When a listener
response was inappropriate according to their judgment they were instructed to press
the spacebar (a yuck response). The participants had the option to replay the video,
which would result in a loss of all collected judgments for that video so far.

After each pair of stimuli of the same interaction, they were asked which of the
two generated virtual listeners they preferred.

10.5.2 Stimuli

The stimuli that were presented to the participants were side-by-side interactions
between a speaker from the MultiLis corpus and a generated virtual listener (see
Figure 10.4). The speakers were the speakers from the same ten interactions used in
the objective evaluation. In response to these speakers we generated virtual listeners
using the BML realizer Elckerlyc [142]. There were four versions of these virtual
listeners generated for each interaction.

Each virtual listener was generated using the fixed or dynamic threshold and with
the same head nod each time or with variable head nods. For the fixed threshold
the threshold that was validated to achieve the highest F1 score in the original paper
(0.2122) was used. For the values for the parameters of the dynamic threshold the
same procedure as explained in Section 10.4.1 was used. Gap parameter g was set to
7, which corresponds to the mean response rate found in the MultiLis corpus.
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Figure 10.4: Screenshot of one of the stimuli used in the perception study.

At each selected peak a head nod was generated. The behavior was realized
with the BML element <head>. Specifically, a head nod was generated that started
downward, lasted 0.4 seconds, reached its lowest point after 0.13 and stayed there for
0.02 seconds. For the listeners with the same head nod each time, the amplitude of
the behavior was set to 0.15. For the listeners with variable head nods, the amplitude
corresponded to half of the prediction value of the peak in the prediction value curve.
This resulted in a minimum amplitude of 0.04 and a maximum of 0.29.

10.5.3 Measures

The preference of the participants was measured by an objective and a subjective
method.

For the objective method the number of yuck responses was recorded during the
interaction. Because of the variation in response rate between the fixed and dynamic
threshold the number of the yuck responses was divided by the number of judged
head nods. The listener with the lowest number of yuck responses per judged head
nod was counted as the preferred listener.

The subjective preference of the participant was recorded by a slider with the
first listener on the left end and the second listener on the right end. The slider was
initialized in the middle (no preference). Furthermore, the participants were asked
what they thought to be the difference between the two generated listeners through
an open question to gain insight into which characteristics they based their decision
on.

10.5.4 Results

In the experiment two comparisons were made by the participants: a comparison
between fixed and dynamic threshold and a comparison between the same and variable
head nods.

The results for the comparison between the fixed and dynamic threshold are pre-
sented in Figure 10.5. The height of the bars in the figure shows the number of
times the listener generated using a fixed or dynamic threshold was preferred by the
participants based on the subjective preference rating (left) or the objective measure
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Figure 10.5: The height of the bars shows the number of times the listener generated using a
fixed or dynamic threshold was preferred by the participants based on preference rating (left) or
number of inappropriate head nods (right).
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Figure 10.6: The height of the bars shows the number of times the listener with the same head
nods or variable head nods was preferred by the participants based on preference rating (left) or
number of inappropriate head nods (right).

of number of inappropriate head nods per judged head nod (right). The results are
polarizing. For the subjective measure based on the preference ratings from the par-
ticipants (left graph) the listener using dynamic thresholding was selected once more
(15 versus 14 for fixed thresholding) and 5 times no preference was indicated. Based
on the objective measure of inappropriate judgments per judged head nod the differ-
ence is a little bit bigger. The dynamic thresholding had 18 times the least number of
inappropriate judgments per judged head nod and fixed thresholding 14 times. Two
times this rate was the same.

So, at first sight there does not appear to be a clear favorite. Looking at the
answers to the open question about the motivation for their choice reveals that of-
tentimes the decision was based on the number of listener responses given. If this
was the motiviation, most often the listener with the most responses was selected as
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the preferred listener. In the stimuli there was an imbalance between the two condi-
tions in this regard. For nine out of ten interactions the listener generated with the
fixed thresholds had more responses than the version with the dynamic threshold. In
total 495 responses were generated in the fixed threshold condition and 366 in the
dynamic threshold condition. Therefore, there was an unexpected bias in our stimuli
towards the fixed threshold. Despite this bias, the dynamic threshold still comes out
slightly ahead or at least equal to the fixed threshold.

The results for the comparison between the same and variable head nods are
presented in Figure 10.6. The height of the bars in the figure shows the number
of times the listener generated using the same or variable head nods was preferred
by the participants based on the subjective preference rating (left) or the objective
measure of number of yuck responses per judged head nod (right). Based on the
preference rating (left graph) the variable head nods were more often preferred than
the same head nods (15 times versus 8 times, with 11 times no preference). Based
on the objective measure this difference was even bigger (21 times for variable head
nods, 8 times for the same head nods and 5 times no preference).

The higher number of no preference ratings shows that the participants had a
harder time choosing between these two versions of the virtual listener. Based on the
open question only one participant seemed to have consciously noticed the varying
amplitude of the generated head nods and has provided this as a reason for his/her
preference. This is not a surprise, since the participants were not instructed to pay at-
tention to the form of the behavior. During the interaction they were mainly focussed
on the timing of the listener responses and hitting the keyboard any time they saw
a head nod that was inappropriately timed. However, the fact that the amplitude of
the head nod factored into the decision to judge a head nod as inappropriate or not is
likely. This is shown by the fact that the listeners in variable head nods condition had
fewer yuck responses. The number of times the participants hit the keyboard during
an interaction subsequently carried over into their decision on their preference.

10.6 Conclusion

In this Chapter we have presented a novel way of interpreting the prediction value
curves that are the output of the current state-of-the-art models in predicting generic
listener responses for embodied conversational agents. Based on the time since the
last generated listener response the dynamic thresholding approach varies the thresh-
old that peaks in the prediction value curve need to exceed in order to be selected as a
suitable place for a listener response. The proposed formula for this dynamic thresh-
old includes a parameter which controls the response rate of the generated behavior.
This gives the designer of the listening behavior of a virtual listener the tools to create
the behavior that is desired for the targetted role, personality or situation.

Through objective and subjective evaluation it was shown that the generated be-
havior was more stable under changing conditions and was perceived to be at least
equally humanlike to the behavior of the traditional fixed threshold. Furthermore, it
was shown that the “strength” of the listener response can be varied using the height
of the selected peak in the prediction value curve and that this is preferred over gen-
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erating the same head nod all the time.



Part IV

Concluding Thoughts





11
Reflection and Future Work

One of the questions to address research on spoken dialogue systems and embodied
conversational agents is to have the system produce appropriate behavior when the
user of the system is speaking. In human-human conversations, listeners produce
listener responses to indicate that they are hearing, understanding and assessing what
the speaker is saying. This behavior is a key part of the grounding process which is
one of the structures in human-human communication.

In the computational literature there is a line of research that tries to build arti-
ficial listeners that generate such responses in a reactive manner: without intricate
deliberation and only based on superficial cues from the speaker’s voice, sometimes
combined with visual information. The computational models that are built in this
line of research are based on the analysis of and learning on recordings of human-
human recordings.

In this thesis we have expanded on this line of research. We have analyzed and
built reactive models for a subset of listener responses, namely generic listener re-
sponses. The presented work was executed under the assumption is that there are
some places where a generic listener response is more appropriate (perhaps even
mandatory) and places where it would be perceived strange if the system would pro-
duce a generic listener response and that these places can be extracted from these
human-human recordings. These different type of places, which we have called re-
sponses opportunities, were analyzed in human-human recordings and utilized for
modeling in several ways - introducing new methods of data collection to get more
insight in the characteristics of the response opportunities and new strategies to use
the data to build reactive models of listener responses.

The contributions of this thesis can be summarized by the following:

• The Concept of Response Opportunities - Central to the work presented in
this thesis was the concept of response opportunities. A response opportunity
was defined as a window in time where a listener response is appropriate. The
response opportunities were identified by collecting multiple perspectives on
appropriate and inappropriate listening behavior. With each response opportu-
nity comes the number of listeners that responded to that response opportunity.
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Conversational analysis showed differences between important response oppor-
tunities and less important response opportunities. The concept of response op-
portunities and the associated importance of the response opportunity proved to
be a useful concept to improve the learning and evaluating of listener response
prediction models.

• Methods for Collecting Multiple Perspectives on Listening Behavior - To
identify as many response opportunities in an interaction as possible we pre-
sented three methods to collect multiple perspectives on listening behavior.
Through a unique parallel recording setup the MultiLis corpus captured three
listeners in simultaneous interaction with the same speaker. These three lis-
teners gave three perspectives on appropriate listening behavior. The second
method, parasocial sampling, proved to be a suitable substitute to collect addi-
tional perspectives on an existing corpus. Furthermore, individual perceptual
evaluation was introduced to collect perspectives on inappropriate moments to
give a listener response. These perspectives can be combined in a consensus
perspective, which gives an overview of the response opportunities and inap-
propriate moments for listener responses for an interaction.

• Conversational Analysis of the Characteristics of Response Opportunities
- Conversational analysis of the response opportunities was performed looking
into the relation between actions of the speaker and response opportunities.
The analysis was performed on the eye gaze of the speaker, pitch and energy of
the speech signal and the type of statements that the listener responded to. This
analysis showed that the cues known to be associated with listener responses,
such as the speaker looking at the listener and the end of an utterance, are more
often present at the response opportunities where the majority of the listeners
responded than the response opportunities where only one listener responded.
Furthermore, the conversational analysis showed that summarizing and repeat-
ing statements more often elicited a response from all listeners and that listeners
were more likely to deviate from their typical response at such times.

• Methods for Learning Listener Response Prediction Models using Differ-
ences and Similarities between Interlocutors - The thesis presented three
novel methods to improve the learning of listener response prediction models.
Since each of the presented methods focussed on improving a different aspect
of the learning process they could be combined. The first method presented a
way to collect more accurate positive ground truth samples. This was done by
using only the response opportunities where the majority of the persepectives
responded as positive ground truth samples. The second method presented a
way to collect more accurate negative ground truth samples. This method re-
volved around using the subjective ratings of observers as negative ground truth
samples in an iterative learning setup. The final method presented a way to split
the learning data to learn a speaker-adaptive listener response prediction model.
This method learned a model for each interaction individually, selected the best
performing models for the model collection and matched new speakers with the
speakers from the learning data to select the appropriate model from the model
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collection.

Furthermore, the thesis presented methods to improve the evaluation of listener
response prediction models with a new performance objective measure Fconsensus and
the subjective individual perceptual evaluation method. As a final contribution the dy-
namic thresholding technique was presented as a method to generate personalizable
and predictable listening behavior for embodied conversational agents using listener
response prediction models.

11.1 Limitations and Future Work

All analyses in this thesis were performed on the MultiLis corpus. Due to the parallel
recording setup the interaction in the MultiLis corpus was restricted. No turn-taking
was allowed and the flow of information was one-sided, from the speaker to the
listener. This brings certain characteristics to the interactions which may not trans-
late to more interactive conversational settings. The question is whether the results
presented in this thesis, whether it be the results of the conversational analysis or
the performances of the listener response prediction models, transfer over to con-
versations where turn-taking behavior becomes involved. Are the cues for response
opportunities the same in less structured and more interactive interactions than the
interaction with an information giving task used for the MultiLis corpus? And conse-
quently, do the listener response prediction models also work for such interactions?
The assumption in this thesis is that they do, but without comparative studies this is
open for debate.

The listener response prediction models developed in this thesis only model the
timing of generic listener responses. These generic listener responses have the func-
tion to signal attendence and a general notion of understanding to let the speaker
know he/she can continue. Typical examples of such generic listener responses in-
clude nods and minimal verbal utterance such as “mm-hmm” or “yeah”. This is only
a subset of the behavior that listeners display and additional studies are required to
built models that are capable of capture the complete listening behavior of humans.

Furthermore, the listener response prediction models presented in this thesis work
on features that only represent superficial behavior. The presented models perform
at an adequate level based on these features (for instance only 8% of the generated
responses of the subjective evaluation presented in Section 10.5 were found to be
inappropriate), but more advanced features representing the meaning and level of
understanding of the contributions of the speaker are needed to advance the state-of-
the art of such models. Work towards such features exists [39, 140], but so far such
features have not been used for listener response prediction models.

Also other aspects of the listener response prediction models can be improved
upon. Development of such models should move away from building one general
model representing the consensus of all speakers and listeners in a corpus. Each hu-
man is unique in their behavior and adaptation is something that is one of the funda-
mental processes in conversation. The speaker-adaptive listener response prediction
model presented in Chapter 9 is a promising step into this direction. The working
of the current speaker-adapative model has room for improvement. The approach
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would probably benefit from more sophisticated speaker descriptors than currently
used. The conversational analysis results from Part II showed that listener responses
were usually placed near the end of an utterance. The current speaker descriptors
summarize the behavior of the speakers during the whole interaction, but more tar-
getted descriptors for the behavior near the end of an utterance are possibly more
informative for finding the model that is trained on the most similar speaker.

Integration of the listener response prediction models in an interactive virtual
agent was originally one of the goals. The dynamic threshold and variable head nods
have been proposed as tools for integration. However, many other aspects still need
further investigation. For instance, currently the model only generates head nods as
listener responses, but vocal listener responses are also common.

Ultimately, listening behavior is only a small portion of the behavior of humans
during conversations. The models proposed in this thesis need to be integrated with
models for speaking behavior and models for turn-taking behavior which handles
the transition between these two conversational roles. And these are only some of
the challenges that lie ahead before the interaction with an embodied conversational
agent feels like an interaction with a human. By using and refining the methods for
data collection that were introduced and used in this thesis and applying them to
other issues related to human-agent communication, these challenges will hopefully
become less of a challenge.



Publications

Included in this Thesis

Iwan de Kok, Derya Ozkan, Dirk Heylen and Louis-Philippe Morency. Learning and Evaluating
Response Prediction Models using Parallel Listener Consensus. In International Conference on
Multimodal Interfaces and the Workshop on Machine Learning for Multimodal Interaction, pages
3-10, 2010.

Iwan de Kok and Dirk Heylen. The MultiLis Corpus - Dealing with Individual Differences in
Nonverbal Listening Behavior, in Proceedings of the Third COST 2102 International Training
School, pages 362-375, 2011.

Iwan de Kok and Dirk Heylen. Observations on Listener Responses from Multiple Perspectives,
in Proceedings of the 3rd Nordic Symposium on Multimodal Communication, pages 48-55, 2011.

Iwan de Kok and Dirk Heylen. Appropriate and Inappropriate Timing of Listener Responses
from Multiple Perspectives, in Intelligent Virtual Agents, pages 248-254, 2011.

Iwan de Kok and Dirk Heylen. Analyzing Nonverbal Listener Responses using Parallel Record-
ings of Multiple Listeners. Cognitive Processing, 13(2):499-506, 2012.

Iwan de Kok and Dirk Heylen. A survey on evaluation metrics for backchannel prediction
models, in Proceedings of the Interdisciplinary Workshop on Feedback Behaviors in Dialog, pages
15-18, 2012.

Iwan de Kok and Dirk Heylen. Integrating Backchannel Prediction Models into Embodied
Conversational Agents. In Proceedings of the 11th International Conference on Intelligent Virtual
Agents (IVA 2012), pages 268-274, 2012.

Iwan de Kok and Dirk Heylen. Controlling the Listener Response Rate of Virtual Agents.
Accepted for publication at the 12th International Conference on Intelligent Virtual Agents (IVA
2013), 2013.

Iwan de Kok, Dirk Heylen and Louis-Philippe Morency. Speaker-Adaptive Multimodal Predic-
tion Model for Listener Responses. Submitted to the 15th ACM International Conference on
Multimodal Interaction (ICMI 2013), under review.

Iwan de Kok and Dirk Heylen. Generating Generic Listener Responses for Virtual Agents.
under review.

Iwan de Kok, Ronald Poppe and Dirk Heylen. Iterative Perceptual Learning for Social Behavior
Synthesis, under review.



128 | Chapter 11

Additional Publications

Louis-Philippe Morency, Iwan de Kok and Jonathan Gratch. Context-based Recognition during
Human Interactions: Automatic Feature Selection and Encoding Dictionary. In Proceedings of
the 10th international conference on Multimodal interfaces, pages 181-188, 2008.

Louis-Philippe Morency, Iwan de Kok and Jonathan Gratch. Predicting Listener Backchannels:
A Probabilistic Multimodal Approach. In Intelligent Virtual Agents, pages 176-190, 2008.

Iwan de Kok and Dirk Heylen. Multimodal End-of-Turn Prediction in Multi-Party Meetings. In
Proceedings of the International Conference on Multimodal Interfaces, pages 91-98, 2009.

Louis-Philippe Morency, Iwan de Kok and Jonathan Gratch. A Probabilistic Multimodal Ap-
proach for Predicting Listener Backchannels, Journal of Autonomous Agents and Multi-Agent
Systems, 20(1):70-85, 2010.

Iwan de Kok and Dirk Heylen. Differences in Listener Responses between Procedural and
Narrative Tasks, in Proceedings of the 2nd International Workshop on Social Signal Processing,
pages 5-10, 2010.

Rieks op den Akker, Mariet Theune, Khiet Truong and Iwan de Kok. The Organisation of
Floor in Meetings and the Relation with Speaker Addressee Patterns, in Proceedings of the 2nd
International Workshop on Social Signal Processing, pages 35-40, 2010.

Dennis Reidsma, Iwan de Kok, Daniel Neiberg, Satish Pammi, Bart van Straalen, Khiet Truong
and Herwin van Welbergen. Continuous Interaction with a Virtual Human. Journal on Multi-
modal User Interfaces, 4(2):97-118, 2011.

Khiet Truong, Ronald Poppe, Iwan de Kok and Dirk Heylen. A Multimodal Analysis of Vocal
and Visual Backchannels in Spontaneous Dialogs. In Proceedings of Interspeech, pages 2973-
2976, 2011.

Iwan de Kok and Dirk Heylen. When Do We Smile? Analysis and Modeling of the Nonver-
bal Context of Listener Smiles in Conversation. In Proceedings of the 4th 4th International
Conference on Affective Computing and Intelligent Interaction, pages 477-486, 2011.



Bibliography

[1] hCRF library. http://sourceforge.net/projects/hcrf/.

[2] Jens Allwood and Loredana Cerrato. A study of gestural feedback expressions. In Proc.
of the First Nordic Symposium on Multi-modal Communication, pages 7–20, 2003.

[3] Jens Allwood, Joakim Nivre, and Elisabeth Ahlsén. On the Semantics and Pragmatics
of Linguistic Feedback. Journal of Semantics, 9(1):1–26, 1992.

[4] Anne H. Anderson, Miles Bader, Ellen Gurman Bard, Elizabeth Boyle, Gwyneth Do-
herty, Simon Garrod, Stephen Isard, Jacqueline Kowtko, Jan McAllister, Jim Miller,
Catherine Sotillo, Henry S. Thompson, and Weinert. The HCRC Map Task Corpus.
Language and Speech, 34:351–366, 1991.

[5] Michael Argyle and Mark Cook. Gaze and mutual gaze. Cambridge University Press,
London, United Kingdom, 1976.

[6] Michael Argyle, Roger Ingham, Florisse Alkema, and Margaret McCallin. The different
functions of gaze. Semiotica, 7(1):19–32, 1973.

[7] Janet Beavin Bavelas, Linda Coates, and Trudy Johnson. Listeners as co-narrators.
Journal of Personality and Social Psychology, 79(6):941–952, 2000.

[8] Janet Beavin Bavelas, Linda Coates, and Trudy Johnson. Listener responses as a col-
laborative process: The role of gaze. Journal of Communication, 52(3):566–580, 2002.

[9] Janet Beavin Bavelas and Jennifer Gerwing. The Listener as Addressee in Face-to-Face
Dialogue. International Journal of Listening, 25(3):178–198, 2011.

[10] Stefan Benus, Agust́ın Gravano, and Julia Hirschberg. The prosody of backchannels in
american english. In In Proceedings of ICPhS, pages 1065–1068, 2007.

[11] Roxane Bertrand, Morgane Ader, Philippe Blache, Gaëlle Ferré, Robert Espesser, and
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A BML Realizer for continuous, multimodal interaction with a Virtual Human. Journal
on Multimodal User Interfaces, 3(4):271–284, 2010.
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